Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 136(5): 1276-1283, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602000

RESUMO

In patients with chronic obstructive pulmonary disease (COPD), pulmonary vascular dysfunction and destruction are observable before the onset of detectable emphysema, but it is unknown whether this is associated with central hypovolemia. We investigated if patients with COPD have reduced pulmonary blood volume (PBV) evaluated by 82Rb-positron emission tomography (PET) at rest and during adenosine-induced hyperemia. This single-center retrospective cohort study assessed 6,301 82Rb-PET myocardial perfusion imaging (MPI) examinations performed over a 6-yr period. We compared 77 patients with COPD with 44 healthy kidney donors (controls). Cardiac output ([Formula: see text]) and mean 82Rb bolus transit time (MBTT) were used to calculate PBV. [Formula: see text] was similar at rest (COPD: 3,649 ± 120 mL vs. control: 3,891 ± 160 mL, P = 0.368) but lower in patients with COPD compared with controls during adenosine infusion (COPD: 5,432 ± 124 mL vs. control: 6,185 ± 161 mL, P < 0.050). MBTT was shorter in patients with COPD compared with controls at rest (COPD: 8.7 ± 0.28 s vs. control: 11.4 ± 0.37 s, P < 0.001) and during adenosine infusion (COPD: 9.2 ± 0.28 s vs. control: 10.2 ± 0.37 s, P < 0.014). PBV was lower in patients with COPD, even after adjustment for body surface area, sex, and age at rest [COPD: 530 (29) mL vs. 708 (38) mL, P < 0.001] and during adenosine infusion [COPD: 826 (29) mL vs. 1,044 (38) mL, P < 0.001]. In conclusion, patients with COPD show evidence of central hypovolemia, but it remains to be determined whether this has any diagnostic or prognostic impact.NEW & NOTEWORTHY The present study demonstrated that patients with chronic obstructive pulmonary disease (COPD) exhibit central hypovolemia compared with healthy controls. Pulmonary blood volume may thus be a relevant physiological and/or clinical outcome measure in future COPD studies.


Assuntos
Volume Sanguíneo , Tomografia por Emissão de Pósitrons , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Volume Sanguíneo/fisiologia , Tomografia por Emissão de Pósitrons/métodos , Pulmão/fisiopatologia , Pulmão/diagnóstico por imagem , Radioisótopos de Rubídio , Imagem de Perfusão do Miocárdio/métodos , Adenosina/administração & dosagem , Débito Cardíaco/fisiologia
2.
J Vis Exp ; (204)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38372367

RESUMO

The combined single-breath measurement of the diffusing capacity of carbon monoxide (DL,CO) and nitric oxide (DL,NO) is a useful technique to measure pulmonary alveolar-capillary reserve in both healthy and patient populations. The measurement provides an estimate of the participant's ability to recruit and distend pulmonary capillaries. The method has recently been reported to exhibit a high test-retest reliability in healthy volunteers during exercise of light to moderate intensity. Of note, this technique permits up to 12 repeated maneuvers and only requires a single breath with a relatively short breath-hold time of 5 s. Representative data are provided showing the gradual changes in DL,NO and DL,CO from rest to exercise at increasing intensities of up to 60% of maximal workload. The measurement of diffusing capacity and evaluation of alveolar-capillary reserve is a useful tool to evaluate the lung's ability to respond to exercise both in the healthy population as well as in patient populations such as those with chronic lung disease.


Assuntos
Exercício Físico , Capacidade de Difusão Pulmonar , Humanos , Reprodutibilidade dos Testes , Pulmão , Monóxido de Carbono , Óxido Nítrico , Teste de Esforço
4.
J Nucl Cardiol ; 30(6): 2504-2513, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37349559

RESUMO

BACKGROUND: This study aimed to assess the feasibility of estimating the pulmonary blood volume noninvasively using standard Rubidium-82 myocardial perfusion imaging (MPI) and characterize the changes during adenosine-induced hyperemia. METHODS: This study comprised 33 healthy volunteers (15 female, median age = 23 years), of which 25 underwent serial rest/adenosine stress Rubidium-82 MPI sessions. Mean bolus transit times (MBTT) were obtained by calculating the time delay from the Rubidium-82 bolus arrival in the pulmonary trunk to the arrival in the left myocardial atrium. Using the MBTT, in combination with stroke volume (SV) and heart rate (HR), we estimated pulmonary blood volume (PBV = (SV × HR) × MBTT). We report the empirically measured MBTT, HR, SV, and PBV, all stratified by sex [male (M) vs female (F)] as mean (SD). In addition, we report grouped repeatability measures using the within-subject repeatability coefficient. RESULTS: Mean bolus transit times was shortened during adenosine stressing with sex-specific differences [(seconds); Rest: Female (F) = 12.4 (1.5), Male (M) = 14.8 (2.8); stress: F = 8.8 (1.7), M = 11.2 (3.0), all P ≤ 0.01]. HR and SV increased during stress MPI, with a concomitant increase in the PBV [mL]; Rest: F = 544 (98), M = 926 (105); Stress: F = 914 (182), M = 1458 (338), all P < 0.001. The following test-retest repeatability measures were observed for MBTT (Rest = 17.2%, Stress = 17.9%), HR (Rest = 9.1%, Stress = 7.5%), SV (Rest = 8.9%, Stress = 5.6%), and for PBV measures (Rest = 20.7%, Stress = 19.5%) CONCLUSION: Pulmonary blood volume can be extracted by cardiac rubidium-82 MPI with excellent test-retest reliability, both at rest and during adenosine-induced hyperemia.


Assuntos
Hiperemia , Imagem de Perfusão do Miocárdio , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Adenosina , Tomografia por Emissão de Pósitrons/métodos , Hiperemia/diagnóstico por imagem , Reprodutibilidade dos Testes , Radioisótopos de Rubídio , Volume Sanguíneo , Imagem de Perfusão do Miocárdio/métodos
5.
Exp Physiol ; 108(2): 307-317, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621806

RESUMO

NEW FINDINGS: What is the central question in this study? How reliable is the combined measurement of the pulmonary diffusing capacity to carbon monoxide and nitric oxide (DLCO/NO ) during exercise and in the resting supine position, respectively? What is the main finding and its importance? The DLCO/NO technique is reliable with a very low day-to-day variability both during exercise and in the resting supine position, and may thus provide a useful physiological outcome that reflects the alveolar-capillary reserve in humans. ABSTRACT: DLCO/NO , the combined single-breath measurement of the diffusing capacity to carbon monoxide (DLCO ) and nitric oxide (DLNO ) measured either during exercise or in the resting supine position may be a useful physiological measure of alveolar-capillary reserve. In the present study, we investigated the between-day test-retest reliability of DLCO/NO -based metrics. Twenty healthy volunteers (10 males, 10 females; mean age 25 (SD 2) years) were randomized to repeated DLCO/NO measurements during upright rest followed by either exercise (n = 11) or resting in the supine position (n = 9). The measurements were repeated within 7 days. The smallest real difference (SRD), defined as the 95% confidence limit of the standard error of measurement (SEM), the coefficient of variance (CV), and intraclass correlation coefficients were used to assess test-retest reliability. SRD for DLNO was higher during upright rest (5.4 (95% CI: 4.1, 7.5) mmol/(min kPa)) than during exercise (2.7 (95% CI: 2.0, 3.9) mmol/(min kPa)) and in the supine position (3.0 (95% CI: 2.1, 4.8) mmol/(min kPa)). SRD for DLCOc was similar between conditions. CV values for DLNO were slightly lower than for DLCOc both during exercise (1.5 (95% CI: 1.2, 1.7) vs. 3.8 (95% CI: 3.2, 4.3)%) and in the supine position (2.2 (95% CI: 1.8, 2.5) vs. 4.8 (95% CI: 3.8, 5.4)%). DLNO increased by 12.3 (95% CI: 11.1, 13.4) and DLCOc by 3.3 (95% CI: 2.9, 3.7) mmol/(min kPa) from upright rest to exercise. The DLCO/NO technique provides reliable indices of alveolar-capillary reserve, both during exercise and in the supine position.


Assuntos
Monóxido de Carbono , Capacidade de Difusão Pulmonar , Masculino , Feminino , Humanos , Adulto , Capacidade de Difusão Pulmonar/fisiologia , Óxido Nítrico , Reprodutibilidade dos Testes , Decúbito Dorsal
6.
J Vis Exp ; (202)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163264

RESUMO

Doppler ultrasound has revolutionized the assessment of organ blood flow and is widely used in research and clinical settings. While Doppler ultrasound-based assessment of contracting leg muscle blood flow is common in human studies, the reliability of this method requires further investigation. Therefore, this study aimed to investigate the within-day test-retest, between-day test-retest, and inter-rater reliability of Doppler ultrasound for assessing leg blood flow during rest and graded single-leg knee-extensions (0 W, 6 W, 12 W, and 18 W), with the ultrasound probe being removed between measurements. The study included thirty healthy subjects (age: 33 ± 9.3, male/female: 14/16) who visited the laboratory on two different experimental days separated by 10 days. The study did not control for major confounders such as nutritional state, time of day, or hormonal status. Across different exercise intensities, the results demonstrated high within-day reliability with a coefficient of variation (CV) ranging from 4.0% to 4.3%, acceptable between-day reliability with a CV ranging from 10.1% to 20.2%, and inter-rater reliability with a CV ranging from 17.9% to 26.8%. Therefore, in a real-life clinical scenario where controlling various environmental factors is challenging, Doppler ultrasound can be used to determine leg blood flow during submaximal single-leg knee-extensor exercise with high within-day reliability and acceptable between-day reliability when performed by the same sonographer.


Assuntos
Exercício Físico , Perna (Membro) , Humanos , Feminino , Masculino , Adulto Jovem , Adulto , Perna (Membro)/diagnóstico por imagem , Perna (Membro)/irrigação sanguínea , Reprodutibilidade dos Testes , Exercício Físico/fisiologia , Fluxo Sanguíneo Regional , Músculo Esquelético , Ultrassonografia Doppler
7.
Front Physiol ; 13: 979359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36134330

RESUMO

Aim: Skeletal muscle convective and diffusive oxygen (O2) transport are peripheral determinants of exercise capacity in both patients with chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF). We hypothesised that differences in these peripheral determinants of performance between COPD and CHF patients are revealed during small muscle mass exercise, where the cardiorespiratory limitations to exercise are diminished. Methods: Eight patients with moderate to severe COPD, eight patients with CHF (NYHA II), and eight age- and sex-matched controls were studied. We measured leg blood flow (Q̇leg) by Doppler ultrasound during submaximal one-legged knee-extensor exercise (KEE), while sampling arterio-venous variables across the leg. The capillary oxyhaemoglobin dissociation curve was reconstructed from paired femoral arterial-venous oxygen tensions and saturations, which enabled the estimation of O2 parameters at the microvascular level within skeletal muscle, so that skeletal muscle oxygen conductance (DSMO2) could be calculated and adjusted for flow (DSMO2/Q̇leg) to distinguish convective from diffusive oxygen transport. Results: During KEE, Q̇leg increased to a similar extent in CHF (2.0 (0.4) L/min) and controls (2.3 (0.3) L/min), but less in COPD patients (1.8 (0.3) L/min) (p <0.03). There was no difference in resting DSMO2 between COPD and CHF and when adjusting for flow, the DSMO2 was higher in both groups compared to controls (COPD: 0.97 (0.23) vs. controls 0.63 (0.24) mM/kPa, p= 0.02; CHF 0.98 (0.11) mM/kPa vs. controls, p= 0.001). The Q̇-adjusted DSMO2 was not different in COPD and CHF during KEE (COPD: 1.19 (0.11) vs. CHF: 1.00 (0.18) mM/kPa; p= 0.24) but higher in COPD vs. controls: 0.87 (0.28) mM/kPa (p= 0.02), and only CHF did not increase Q̇-adjusted DSMO2 from rest (p= 0.2). Conclusion: Disease-specific factors may play a role in peripheral exercise limitation in patients with COPD compared with CHF. Thus, low convective O2 transport to contracting muscle seemed to predominate in COPD, whereas muscle diffusive O2 transport was unresponsive in CHF.

8.
Exp Physiol ; 107(7): 759-770, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34242438

RESUMO

NEW FINDINGS: What is the topic of this review? The use of proning for improving pulmonary gas exchange in critically ill patients. What advances does it highlight? Proning places the lung in its 'natural' posture, and thus optimises the ventilation-perfusion distribution, which enables lung protective ventilation and the alleviation of potentially life-threatening hypoxaemia in COVID-19 and other types of critical illness with respiratory failure. ABSTRACT: The survival benefit of proning patients with acute respiratory distress syndrome (ARDS) is well established and has recently been found to improve pulmonary gas exchange in patients with COVID-19-associated ARDS (CARDS). This review outlines the physiological implications of transitioning from supine to prone on alveolar ventilation-perfusion ( V ̇ A -- Q ̇ ${\dot V_{\rm{A}}}\hbox{--}\dot Q$ ) relationships during spontaneous breathing and during general anaesthesia in the healthy state, as well as during invasive mechanical ventilation in patients with ARDS and CARDS. Spontaneously breathing, awake healthy individuals maintain a small vertical (ventral-to-dorsal) V ̇ A / Q ̇ ${\dot V_{\rm{A}}}/\dot Q$ ratio gradient in the supine position, which is largely neutralised in the prone position, mainly through redistribution of perfusion. In anaesthetised and mechanically ventilated healthy individuals, a vertical V ̇ A / Q ̇ ${\dot V_{\rm{A}}}/\dot Q$ ratio gradient is present in both postures, but with better V ̇ A -- Q ̇ ${\dot V_{\rm{A}}}\hbox{--}\dot Q$ matching in the prone position. In ARDS and CARDS, the vertical V ̇ A / Q ̇ ${\dot V_{\rm{A}}}/\dot Q$ ratio gradient in the supine position becomes larger, with intrapulmonary shunting in gravitationally dependent lung regions due to compression atelectasis of the dorsal lung. This is counteracted by proning, mainly through a more homogeneous distribution of ventilation combined with a largely unaffected high perfusion dorsally, and a consequent substantial improvement in arterial oxygenation. The data regarding proning as a therapy in patients with CARDS is still limited and whether the associated improvement in arterial oxygenation translates to a survival benefit remains unknown. Proning is nonetheless an attractive and lung protective manoeuvre with the potential benefit of improving life-threatening hypoxaemia in patients with ARDS and CARDS.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , Hipóxia/terapia , Decúbito Ventral/fisiologia , Troca Gasosa Pulmonar/fisiologia , Respiração Artificial , Síndrome do Desconforto Respiratório/terapia , Insuficiência Respiratória/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA