Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sci Rep ; 14(1): 8844, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632375

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease that is associated with anxiety and depression. Few studies have addressed interventions for symptoms of anxiety and depression in this population. To determine the efficacy of interventions for anxiety and depression in patients with AD. PubMed, MEDLINE, EMBASE, and PsycINFO were searched from inception to November 2023. English-language studies published in peer-reviewed journals evaluating the effect of interventions on anxiety and/or depression using validated assessment tools on patients with AD were included. Titles, abstracts, and articles were screened by at least two independent reviewers. Of 1410 references that resulted in the initial search, 17 studies were included. Fourteen of these studies are randomized controlled trials, while the other 3 studies are prospective controlled trials with pre and post-test designs. Data were extracted using a standardized extraction form, and the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed. To accommodate trials with multiple interventions (each compared to a control group), we conducted a mixed-effects meta-analysis with the trial as a random effect. Prespecified outcomes were changes in symptoms of anxiety and depression in patients with AD as evaluated using standardized assessment tools. Of the 17 studies included in this systematic review, 7 pharmacological intervention studies with 4723 participants examining 5 different medications were included in a meta-analysis. Of these studies, only 1 study evaluated medications prescribed to treat anxiety and/or depression; the rest evaluated medications prescribed to treat AD. Meta-analysis of all the pharmacological interventions resulted in significant improvement in anxiety, depression, and combined anxiety-depression scale scores (standardized mean difference [95% CI]: - 0.29 [- 0.49 to - 0.09], - 0.27 [- 0.45 to - 0.08], - 0.27 [- 0.45 to - 0.08]) respectively. The 10 non-pharmacological studies with 2058 participants showed general improvement in anxiety but not depression. A meta-analysis of the non-pharmacological interventions was not conducted due to variable approaches and limited data. Pharmacological interventions designed to improve AD were found to improve anxiety and depression in patients with moderate-severe disease. More comprehensive studies on non-pharmacological and pharmacological interventions that primarily target anxiety and depression are needed.


Assuntos
Dermatite Atópica , Humanos , Depressão/terapia , Estudos Prospectivos , Ansiedade/terapia , Transtornos de Ansiedade
2.
Artigo em Inglês | MEDLINE | ID: mdl-38460680

RESUMO

BACKGROUND: Systemic allergic reactions (sARs) following coronavirus disease 2019 (COVID-19) mRNA vaccines were initially reported at a higher rate than after traditional vaccines. OBJECTIVE: We aimed to evaluate the safety of revaccination in these individuals and to interrogate mechanisms underlying these reactions. METHODS: In this randomized, double-blinded, phase 2 trial, participants aged 16 to 69 years who previously reported a convincing sAR to their first dose of COVID-19 mRNA vaccine were randomly assigned to receive a second dose of BNT162b2 (Comirnaty) vaccine and placebo on consecutive days in a blinded, 1:1 crossover fashion at the National Institutes of Health. An open-label BNT162b2 booster was offered 5 months later if the second dose did not result in severe sAR. None of the participants received the mRNA-1273 (Spikevax) vaccine during the study. The primary end point was recurrence of sAR following second dose and booster vaccination; exploratory end points included biomarker measurements. RESULTS: Of 111 screened participants, 18 were randomly assigned to receive study interventions. Eight received BNT162b2 second dose followed by placebo; 8 received placebo followed by BNT162b2 second dose; 2 withdrew before receiving any study intervention. All 16 participants received the booster dose. Following second dose and booster vaccination, sARs recurred in 2 participants (12.5%; 95% CI, 1.6 to 38.3). No sAR occurred after placebo. An anaphylaxis mimic, immunization stress-related response (ISRR), occurred more commonly than sARs following both vaccine and placebo and was associated with higher predose anxiety scores, paresthesias, and distinct vital sign and biomarker changes. CONCLUSIONS: Our findings support revaccination of individuals who report sARs to COVID-19 mRNA vaccines. Distinct clinical and laboratory features may distinguish sARs from ISRRs.

3.
Allergy Asthma Proc ; 44(5): 368-373, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37641223

RESUMO

Background: Food protein-induced enterocolitis syndrome (FPIES) is a rare, non-immunoglobulin E (IgE) mediated gastrointestinal food hypersensitivity. It is a clinical diagnosis commonly characterized by profuse vomiting 1 to 4 hours after ingestion of the triggering food(s). Objective: The objective was to increase awareness of FPIES and review the epidemiology, clinical presentation, pathogenesis, diagnosis, and management of FPIES. The lack of availability of a definite biomarker or diagnostic tool often leads to a delay in diagnosis. Methods: A literature search of salient articles that described case reports and case series of FPIES and their management were analyzed. Results: A case of FPIES with a literature review is presented with emphasis on clinical pearls and pitfalls. FPIES is a diagnosis of exclusion and the mainstay of treatment is avoidance of the trigger food(s) for at least 12-18 months from the last exposure. Conclusion: As FPIES is a non-IgE-mediated reaction, allergy testing via skin-prick test or blood tests to measure food IgE antibodies is not routinely recommended. Many children outgrow FPIES by 3-4 years of age. Supervised oral food challenge is recommended to assess acquisition of tolerance.


Assuntos
Enterocolite , Doenças do Sistema Imunitário , Criança , Humanos , Enterocolite/diagnóstico , Enterocolite/etiologia , Enterocolite/terapia , Alimentos , Tolerância Imunológica , Imunoglobulina E
4.
Nucleic Acids Res ; 51(D1): D1129-D1137, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36039757

RESUMO

R-loops are three-stranded nucleic acid structures formed from the hybridization of RNA and DNA. In 2012, Ginno et al. introduced the first R-loop mapping method. Since that time, dozens of R-loop mapping studies have been conducted, yielding hundreds of publicly available datasets. Current R-loop databases provide only limited access to these data. Moreover, no web tools for analyzing user-supplied R-loop datasets have yet been described. In our recent work, we reprocessed 810 R-loop mapping samples, building the largest R-loop data resource to date. We also defined R-loop consensus regions and developed a framework for R-loop data analysis. Now, we introduce RLBase, a user-friendly database that provides the capability to (i) explore hundreds of public R-loop mapping datasets, (ii) explore R-loop consensus regions, (iii) analyze user-supplied data and (iv) download standardized and reprocessed datasets. RLBase is directly accessible via the following URL: https://gccri.bishop-lab.uthscsa.edu/shiny/rlbase/.


Assuntos
Bases de Dados Genéticas , Estruturas R-Loop , DNA/genética , DNA/química , Hibridização Genética , Hibridização de Ácido Nucleico , RNA/genética , RNA/química
5.
Elife ; 112022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542058

RESUMO

Class switch recombination generates distinct antibody isotypes critical to a robust adaptive immune system, and defects are associated with autoimmune disorders and lymphomagenesis. Transcription is required during class switch recombination to recruit the cytidine deaminase AID-an essential step for the formation of DNA double-strand breaks-and strongly induces the formation of R loops within the immunoglobulin heavy-chain locus. However, the impact of R loops on double-strand break formation and repair during class switch recombination remains unclear. Here, we report that cells lacking two enzymes involved in R loop removal-senataxin and RNase H2-exhibit increased R loop formation and genome instability at the immunoglobulin heavy-chain locus without impacting its transcriptional activity, AID recruitment, or class switch recombination efficiency. Senataxin and RNase H2-deficient cells also exhibit increased insertion mutations at switch junctions, a hallmark of alternative end joining. Importantly, these phenotypes were not observed in cells lacking senataxin or RNase H2B alone. We propose that senataxin acts redundantly with RNase H2 to mediate timely R loop removal, promoting efficient repair while suppressing AID-dependent genome instability and insertional mutagenesis.


The immune system is a complex network of cells and molecules, which helps to protect the body from invaders. The adaptive immune system can recognise millions of assailants, kill them, and 'learn' from this experience to mount an even quicker defence the next time the body is infected. To achieve this level of protection, specific immune cells, called B cells, divide when they come into contact with a molecule from a foreign particle, the antigen. The cloned B cells then produce millions of protective proteins, the antibodies, which patrol the blood stream and tag harmful particles for destruction. An antibody resembles a Y-shaped structure that contains a 'variable' region, which gives it the specificity to interact with an antigen, and a 'constant' region, which interacts with components of the immune system and determines the mechanisms used to destroy a pathogen. Based on the constant region, antibodies can be divided into five main classes. B cells are able to switch their production from one antibody class to another in an event known as class switch recombination, by making changes to the constant region. They do this by cutting out a portion of the genes for the constant region from their DNA and fusing the remaining DNA. The resulting antibodies still recognise the same target, but interact with different components of the immune system, ensuring that all the body's forces are mobilised. R-loops are temporary structures that form when a cell 'reads' the instructions in its DNA to make proteins. R-loops provide physical support by anchoring the transcription template to the DNA. They help control the activity of genes, but if they stay on the DNA for too long they could interfere with any form of. DNA repair ­ including the cutting and fusing mechanisms during class switch recombination. To find out more about this process, Zhao et al. used B-cells from mice lacking two specific proteins that usually help to remove R-loops. Without these proteins, the B cells generated more R-loops than normal. Nevertheless, the B-cells were able to undergo class switch recombination, even though their chromosomes showed large areas of DNA damage, and DNA sections that had been repaired contained several mistakes. Errors that occur during class switch recombination have been linked to immune disorders and B cell cancers. The study of Zhao et al. shows that even if R-loops do not affect some processes in B cells, they could still impact the overall health of their DNA. A next step would be to test if an inability to remove R-loops could indeed play a role in immune disorders and B-cell cancers.


Assuntos
Recombinação Genética , Ribonucleases , Humanos , Ribonucleases/genética , Switching de Imunoglobulina/genética , Endorribonucleases/genética , Isotipos de Imunoglobulinas/genética , Instabilidade Genômica , Citidina Desaminase/genética
7.
Nucleic Acids Res ; 50(13): 7260-7286, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35758606

RESUMO

R-loops are three-stranded nucleic acid structures formed from the hybridization of RNA and DNA. While the pathological consequences of R-loops have been well-studied to date, the locations, classes, and dynamics of physiological R-loops remain poorly understood. R-loop mapping studies provide insight into R-loop dynamics, but their findings are challenging to generalize. This is due to the narrow biological scope of individual studies, the limitations of each mapping modality, and, in some cases, poor data quality. In this study, we reprocessed 810 R-loop mapping datasets from a wide array of biological conditions and mapping modalities. From this data resource, we developed an accurate R-loop data quality control method, and we reveal the extent of poor-quality data within previously published studies. We then identified a set of high-confidence R-loop mapping samples and used them to define consensus R-loop sites called 'R-loop regions' (RL regions). In the process, we identified a stark divergence between RL regions detected by S9.6 and dRNH-based mapping methods, particularly with respect to R-loop size, location, and colocalization with RNA binding factors. Taken together, this work provides a much-needed method to assess R-loop data quality and offers novel context regarding the differences between dRNH- and S9.6-based R-loop mapping approaches.


Assuntos
Estruturas R-Loop , RNA , Consenso , DNA/química , Hibridização de Ácido Nucleico , RNA/química , RNA/genética
9.
Mayo Clin Proc ; 97(1): 154-164, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34823856

RESUMO

The negative health consequences of acute ultraviolet (UV) exposure are evident, with reports of 30,000 emergency room visits annually to treat the effects of sunburn in the United States alone. The acute effects of sunburn include erythema, edema, severe pain, and chronic overexposure to UV radiation, leading to skin cancer. Whereas the pain associated with the acute effects of sunburn may be relieved by current interventions, existing post-sunburn treatments are not capable of reversing the cumulative and long-term pathological effects of UV exposure, an unmet clinical need. Here we show that activation of the vascular endothelial growth factor (VEGF) pathway is a direct and immediate consequence of acute UV exposure, and activation of VEGF signaling is necessary for initiating the acute pathological effects of sunburn. In UV-exposed human subjects, VEGF signaling is activated within hours. Topical delivery of VEGF pathway inhibitors, targeted against the ligand VEGF-A (gold nanoparticles conjugated with anti-VEGF antibodies) and small-molecule antagonists of VEGF receptor signaling, prevent the development of erythema and edema in UV-exposed mice. These findings collectively suggest targeting VEGF signaling may reduce the subsequent inflammation and pathology associated with UV-induced skin damage, revealing a new postexposure therapeutic window to potentially inhibit the known detrimental effects of UV on human skin. It is essential to emphasize that these preclinical studies must not be construed as suggesting in any way the use of VEGF inhibitors as a sunburn treatment in humans because warranted future clinical studies and appropriate agency approval are essential in that regard.


Assuntos
Pele/lesões , Raios Ultravioleta/efeitos adversos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Feminino , Humanos , Camundongos , Camundongos Pelados , Pele/patologia , Queimadura Solar
10.
Nat Commun ; 12(1): 4626, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330913

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that has remained clinically challenging to manage. Here we employ an RNAi-based in vivo functional genomics platform to determine epigenetic vulnerabilities across a panel of patient-derived PDAC models. Through this, we identify protein arginine methyltransferase 1 (PRMT1) as a critical dependency required for PDAC maintenance. Genetic and pharmacological studies validate the role of PRMT1 in maintaining PDAC growth. Mechanistically, using proteomic and transcriptomic analyses, we demonstrate that global inhibition of asymmetric arginine methylation impairs RNA metabolism, which includes RNA splicing, alternative polyadenylation, and transcription termination. This triggers a robust downregulation of multiple pathways involved in the DNA damage response, thereby promoting genomic instability and inhibiting tumor growth. Taken together, our data support PRMT1 as a compelling target in PDAC and informs a mechanism-based translational strategy for future therapeutic development.Statement of significancePDAC is a highly lethal cancer with limited therapeutic options. This study identified and characterized PRMT1-dependent regulation of RNA metabolism and coordination of key cellular processes required for PDAC tumor growth, defining a mechanism-based translational hypothesis for PRMT1 inhibitors.


Assuntos
Carcinoma Ductal Pancreático/genética , Dano ao DNA , Neoplasias Pancreáticas/genética , Proteína-Arginina N-Metiltransferases/genética , RNA/genética , Proteínas Repressoras/genética , Animais , Biocatálise/efeitos dos fármacos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/prevenção & controle , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/prevenção & controle , Proteína-Arginina N-Metiltransferases/metabolismo , RNA/metabolismo , Interferência de RNA , Proteínas Repressoras/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
J Cell Biol ; 220(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33830170

RESUMO

The S9.6 antibody is broadly used to detect RNA:DNA hybrids but has significant affinity for double-stranded RNA. The impact of this off-target RNA binding activity has not been thoroughly investigated, especially in the context of immunofluorescence microscopy. We report that S9.6 immunofluorescence signal observed in fixed human cells arises predominantly from ribosomal RNA, not RNA:DNA hybrids. S9.6 staining was unchanged by pretreatment with the RNA:DNA hybrid-specific nuclease RNase H1, despite verification in situ that S9.6 recognized RNA:DNA hybrids and that RNase H1 was active. S9.6 staining was, however, significantly sensitive to RNase T1, which specifically degrades RNA. Additional imaging and biochemical data indicate that the prominent cytoplasmic and nucleolar S9.6 signal primarily derives from ribosomal RNA. Importantly, genome-wide maps obtained by DNA sequencing after S9.6-mediated DNA:RNA immunoprecipitation (DRIP) are RNase H1 sensitive and RNase T1 insensitive. Altogether, these data demonstrate that imaging using S9.6 is subject to pervasive artifacts without pretreatments and controls that mitigate its promiscuous recognition of cellular RNAs.


Assuntos
Anticorpos Monoclonais/metabolismo , DNA/metabolismo , Ácidos Nucleicos Heteroduplexes/metabolismo , RNA/metabolismo , Ribonuclease H/metabolismo , Anticorpos Monoclonais/química , Afinidade de Anticorpos , Artefatos , DNA/química , Humanos , Ácidos Nucleicos Heteroduplexes/química , RNA/química , Ribonuclease H/química
12.
Cancer Discov ; 11(8): 2050-2071, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33707234

RESUMO

A number of cancer drugs activate innate immune pathways in tumor cells but unfortunately also compromise antitumor immune function. We discovered that inhibition of CARM1, an epigenetic enzyme and cotranscriptional activator, elicited beneficial antitumor activity in both cytotoxic T cells and tumor cells. In T cells, Carm1 inactivation substantially enhanced their antitumor function and preserved memory-like populations required for sustained antitumor immunity. In tumor cells, Carm1 inactivation induced a potent type 1 interferon response that sensitized resistant tumors to cytotoxic T cells. Substantially increased numbers of dendritic cells, CD8 T cells, and natural killer cells were present in Carm1-deficient tumors, and infiltrating CD8 T cells expressed low levels of exhaustion markers. Targeting of CARM1 with a small molecule elicited potent antitumor immunity and sensitized resistant tumors to checkpoint blockade. Targeting of this cotranscriptional regulator thus offers an opportunity to enhance immune function while simultaneously sensitizing resistant tumor cells to immune attack. SIGNIFICANCE: Resistance to cancer immunotherapy remains a major challenge. Targeting of CARM1 enables immunotherapy of resistant tumors by enhancing T-cell functionality and preserving memory-like T-cell populations within tumors. CARM1 inhibition also sensitizes resistant tumor cells to immune attack by inducing a tumor cell-intrinsic type 1 interferon response.This article is highlighted in the In This Issue feature, p. 1861.


Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/terapia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Imunoterapia , Linfócitos T/efeitos dos fármacos
13.
EMBO J ; 40(4): e106394, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33411340

RESUMO

R-loops represent an abundant class of large non-B DNA structures in genomes. Even though they form transiently and at modest frequencies, interfering with R-loop formation or dissolution has significant impacts on genome stability. Addressing the mechanism(s) of R-loop-mediated genome destabilization requires a precise characterization of their distribution in genomes. A number of independent methods have been developed to visualize and map R-loops, but their results are at times discordant, leading to confusion. Here, we review the main existing methodologies for R-loop mapping and assess their limitations as well as the robustness of existing datasets. We offer a set of best practices to improve the reproducibility of maps, hoping that such guidelines could be useful for authors and referees alike. Finally, we propose a possible resolution for the apparent contradictions in R-loop mapping outcomes between antibody-based and RNase H1-based mapping approaches.


Assuntos
DNA/química , Genoma Humano , Instabilidade Genômica , Estruturas R-Loop , RNA/química , Humanos
14.
Autophagy ; 17(8): 1889-1906, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32686621

RESUMO

SETX (senataxin) is an RNA/DNA helicase that has been implicated in transcriptional regulation and the DNA damage response through resolution of R-loop structures. Mutations in SETX result in either of two distinct neurodegenerative disorders. SETX dominant mutations result in a juvenile form of amyotrophic lateral sclerosis (ALS) called ALS4, whereas recessive mutations are responsible for ataxia called ataxia with oculomotor apraxia type 2 (AOA2). How mutations in the same protein can lead to different phenotypes is still unclear. To elucidate AOA2 disease mechanisms, we first examined gene expression changes following SETX depletion. We observed the effects on both transcription and RNA processing, but surprisingly observed decreased R-loop accumulation in SETX-depleted cells. Importantly, we discovered a strong connection between SETX and the macroautophagy/autophagy pathway, reflecting a direct effect on transcription of autophagy genes. We show that SETX depletion inhibits the progression of autophagy, leading to an accumulation of ubiquitinated proteins, decreased ability to clear protein aggregates, as well as mitochondrial defects. Analysis of AOA2 patient fibroblasts also revealed a perturbation of the autophagy pathway. Our work has thus identified a novel function for SETX in the regulation of autophagy, whose modulation may have a therapeutic impact for AOA2.Abbreviations: 3'READS: 3' region extraction and deep sequencing; ACTB: actin beta; ALS4: amyotrophic lateral sclerosis type 4; AOA2: ataxia with oculomotor apraxia type 2; APA: alternative polyadenylation; AS: alternative splicing; ATG7: autophagy-related 7; ATP6V0D2: ATPase H+ transporting V0 subunit D2; BAF: bafilomycin A1; BECN1: beclin 1; ChIP: chromatin IP; Chloro: chloroquine; CPT: camptothecin; DDR: DNA damage response; DNMT1: DNA methyltransferase 1; DRIP: DNA/RNA IP; DSBs: double strand breaks; EBs: embryoid bodies; FTD: frontotemporal dementia; GABARAP: GABA type A receptor-associated protein; GO: gene ontology; HR: homologous recombination; HTT: huntingtin; IF: immunofluorescence; IP: immunoprecipitation; iPSCs: induced pluripotent stem cells; KD: knockdown; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MN: motor neuron; MTORC1: mechanistic target of rapamycin kinase complex 1; PASS: PolyA Site Supporting; PFA: paraformaldehyde; RNAPII: RNA polymerase II; SCA: spinocerebellar ataxia; SETX: senataxin; SMA: spinal muscular atrophy; SMN1: survival of motor neuron 1, telomeric; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TSS: transcription start site; TTS: transcription termination site; ULK1: unc-51 like autophagy activating kinase 1; WB: western blot; WIPI2: WD repeat domain, phosphoinositide interacting 2; XRN2: 5'-3' exoribonuclease 2.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Autofagia/fisiologia , DNA Helicases/metabolismo , Enzimas Multifuncionais/metabolismo , RNA Helicases/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Neurônios Motores/metabolismo
15.
Elife ; 92020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185185

RESUMO

Displacement loops (D-loops) are signature intermediates formed during homologous recombination. Numerous factors regulate D-loop formation and disruption, thereby influencing crucial aspects of DNA repair, including donor choice and the possibility of crossover outcome. While D-loop detection methods exist, it is currently unfeasible to assess the relationship between D-loop editors and D-loop characteristics such as length and position. Here, we developed a novel in vitro assay to characterize the length and position of individual D-loops with near base-pair resolution and deep coverage, while also revealing their distribution in a population. Non-denaturing bisulfite treatment modifies the cytosines on the displaced strand of the D-loop to uracil, leaving a permanent signature for the displaced strand. Subsequent single-molecule real-time sequencing uncovers the cytosine conversion patch as a D-loop footprint. The D-loop Mapping Assay is widely applicable with different substrates and donor types and can be used to study factors that influence D-loop properties.


Assuntos
Reparo do DNA/fisiologia , DNA de Cadeia Simples/química , Imagem Individual de Molécula , Sulfitos , Citosina/química , Técnicas de Amplificação de Ácido Nucleico , Uracila/química
16.
Elife ; 92020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185188

RESUMO

Displacement loops (D-loops) are critical intermediates formed during homologous recombination. Rdh54 (a.k.a. Tid1), a Rad54 paralog in Saccharomyces cerevisiae, is well-known for its role with Dmc1 recombinase during meiotic recombination. Yet contrary to Dmc1, Rdh54/Tid1 is also present in somatic cells where its function is less understood. While Rdh54/Tid1 enhances the Rad51 DNA strand invasion activity in vitro, it is unclear how it interplays with Rad54. Here, we show that Rdh54/Tid1 inhibits D-loop formation by Rad51 and Rad54 in an ATPase-independent manner. Using a novel D-loop Mapping Assay, we further demonstrate that Rdh54/Tid1 uniquely restricts the length of Rad51-Rad54-mediated D-loops. The alterations in D-loop properties appear to be important for cell survival and mating-type switch in haploid yeast. We propose that Rdh54/Tid1 and Rad54 compete for potential binding sites within the Rad51 filament, where Rdh54/Tid1 acts as a physical roadblock to Rad54 translocation, limiting D-loop formation and D-loop length.


Assuntos
DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/fisiologia , DNA Topoisomerases/metabolismo , Rad51 Recombinase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , DNA Topoisomerases/genética , DNA Fúngico/química , Regulação Fúngica da Expressão Gênica/fisiologia , Mutação , Rad51 Recombinase/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
J Mol Biol ; 432(7): 2271-2288, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32105733

RESUMO

R-loops are a prevalent class of non-B DNA structures that have been associated with both positive and negative cellular outcomes. DNA:RNA immunoprecipitation (DRIP) approaches based on the anti-DNA:RNA hybrid S9.6 antibody revealed that R-loops form dynamically over conserved genic hotspots. We have developed an orthogonal approach that queries R-loops via the presence of long stretches of single-stranded DNA on their looped-out strand. Nondenaturing sodium bisulfite treatment catalyzes the conversion of unpaired cytosines to uracils, creating permanent genetic tags for the position of an R-loop. Long-read, single-molecule PacBio sequencing allows the identification of R-loop 'footprints' at near nucleotide resolution in a strand-specific manner on long single DNA molecules and at ultra-deep coverage. Single-molecule R-loop footprinting coupled with PacBio sequencing (SMRF-seq) revealed a strong agreement between S9.6-based and bisulfite-based R-loop mapping and confirmed that R-loops form over genic hotspots, including gene bodies and terminal gene regions. Based on the largest single-molecule R-loop dataset to date, we show that individual R-loops form nonrandomly, defining discrete sets of overlapping molecular clusters that pileup through larger R-loop zones. R-loops most often map to intronic regions and their individual start and stop positions do not match with intron-exon boundaries, reinforcing the model that they form cotranscriptionally from unspliced transcripts. SMRF-seq further established that R-loop distribution patterns are not simply driven by intrinsic DNA sequence features but most likely also reflect DNA topological constraints. Overall, DRIP-based and SMRF-based approaches independently provide a complementary and congruent view of R-loop distribution, consolidating our understanding of the principles underlying R-loop formation.


Assuntos
DNA/química , Células-Tronco de Carcinoma Embrionário/metabolismo , Estruturas R-Loop , RNA/química , Análise de Célula Única/métodos , Transcrição Gênica , Células-Tronco de Carcinoma Embrionário/citologia , Humanos
18.
Proc Natl Acad Sci U S A ; 116(13): 6260-6269, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850542

RESUMO

R-loops are abundant three-stranded nucleic-acid structures that form in cis during transcription. Experimental evidence suggests that R-loop formation is affected by DNA sequence and topology. However, the exact manner by which these factors interact to determine R-loop susceptibility is unclear. To investigate this, we developed a statistical mechanical equilibrium model of R-loop formation in superhelical DNA. In this model, the energy involved in forming an R-loop includes four terms-junctional and base-pairing energies and energies associated with superhelicity and with the torsional winding of the displaced DNA single strand around the RNA:DNA hybrid. This model shows that the significant energy barrier imposed by the formation of junctions can be overcome in two ways. First, base-pairing energy can favor RNA:DNA over DNA:DNA duplexes in favorable sequences. Second, R-loops, by absorbing negative superhelicity, partially or fully relax the rest of the DNA domain, thereby returning it to a lower energy state. In vitro transcription assays confirmed that R-loops cause plasmid relaxation and that negative superhelicity is required for R-loops to form, even in a favorable region. Single-molecule R-loop footprinting following in vitro transcription showed a strong agreement between theoretical predictions and experimental mapping of stable R-loop positions and further revealed the impact of DNA topology on the R-loop distribution landscape. Our results clarify the interplay between base sequence and DNA superhelicity in controlling R-loop stability. They also reveal R-loops as powerful and reversible topology sinks that cells may use to nonenzymatically relieve superhelical stress during transcription.


Assuntos
Sequência de Bases , DNA Super-Helicoidal/química , DNA/química , Conformação de Ácido Nucleico , DNA de Cadeia Simples/química , Modelos Genéticos , Hibridização de Ácido Nucleico , Plasmídeos/química , RNA/química , Transcrição Gênica
19.
Clin Rev Allergy Immunol ; 57(2): 145-165, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29754192

RESUMO

There are now 354 inborn errors of immunity (primary immunodeficiency diseases (PIDDs)) with 344 distinct molecular etiologies reported according to the International Union of Immunological Sciences (IUIS) (Clin Gastroenterol Hepatol 11: p. 1050-63, 2013, Semin Gastrointest Dis 8: p. 22-32, 1997, J Clin Immunol 38: p. 96-128, 2018). Using the IUIS document as a reference and cross-checking PubMed ( www.ncbi.nlm.nih.pubmed.gov ), we found that approximately one third of the 354 diseases of impaired immunity have a gastrointestinal component [J Clin Immunol 38: p. 96-128, 2018]. Often, the gastrointestinal symptomatology and pathology is the heralding sign of a PIDD; therefore, it is important to recognize patterns of disease which may manifest along the gastrointestinal tract as a more global derangement of immune function. As such, holistic consideration of immunity is warranted in patients with clinically significant gastrointestinal disease. Here, we discuss the manifold presentations and GI-specific complications of PIDDs which could lead patients to seek advice from a variety of clinician specialists. Often, patients with these medical problems will engage general pediatricians, surgeons, gastroenterologists, rheumatologists, and clinical immunologists among others. Following delineation of the presenting concern, accurate and often molecular diagnosis is imperative and a multi-disciplinary approach warranted for optimal management. In this review, we will summarize the current state of understanding of PIDD gastrointestinal disease involvement. We will do so by focusing upon gastrointestinal disease categories (i.e., inflammatory, diarrhea, nodular lymphoid hyperplasia, liver/biliary tract, structural disease, and oncologic disease) with an intent to aid the healthcare provider who may encounter a patient with an as-yet undiagnosed PIDD who presents initially with a gastrointestinal symptom, sign, or problem.


Assuntos
Gastroenteropatias/epidemiologia , Doenças da Imunodeficiência Primária/epidemiologia , Adolescente , Adulto , Criança , Pré-Escolar , Comorbidade , Gastroenteropatias/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Imunidade/fisiologia , Lactente , Recém-Nascido , Prevalência , Doenças da Imunodeficiência Primária/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA