Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2714, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548766

RESUMO

Anaerobic gut fungi (AGF, Neocallimastigomycota) reside in the alimentary tract of herbivores. While their presence in mammals is well documented, evidence for their occurrence in non-mammalian hosts is currently sparse. Culture-independent surveys of AGF in tortoises identified a unique community, with three novel deep-branching genera representing >90% of sequences in most samples. Representatives of all genera were successfully isolated under strict anaerobic conditions. Transcriptomics-enabled phylogenomic and molecular dating analyses indicated an ancient, deep-branching position in the AGF tree for these genera, with an evolutionary divergence time estimate of 104-112 million years ago (Mya). Such estimates push the establishment of animal-Neocallimastigomycota symbiosis from the late to the early Cretaceous. Further, tortoise-associated isolates (T-AGF) exhibited limited capacity for plant polysaccharides metabolism and lacked genes encoding several carbohydrate-active enzyme (CAZyme) families. Finally, we demonstrate that the observed curtailed degradation capacities and reduced CAZyme repertoire is driven by the paucity of horizontal gene transfer (HGT) in T-AGF genomes, compared to their mammalian counterparts. This reduced capacity was reflected in an altered cellulosomal production capacity in T-AGF. Our findings provide insights into the phylogenetic diversity, ecological distribution, evolutionary history, evolution of fungal-host nutritional symbiosis, and dynamics of genes acquisition in Neocallimastigomycota.


Assuntos
Neocallimastigomycota , Tartarugas , Humanos , Animais , Neocallimastigomycota/genética , Neocallimastigomycota/metabolismo , Tartarugas/genética , Filogenia , Anaerobiose , Simbiose/genética , Mamíferos , Fungos/genética
2.
Front Physiol ; 13: 860868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370787

RESUMO

Woody breast (WB) is a myopathy observed in broiler Pectoralis major (PM) characterized by its tough and rubbery texture with greater level of calcium content. The objective of this study was to investigate the functionality/integrity of WB sarcoplasmic reticulum (SR), which may contribute to the elevated calcium content observed in WB and other factors that may influence WB texture. Fourteen Ross line broiler PM [7 severe WB and 7 normal (N)] were selected, packaged, and frozen at -20°C at 8 h postmortem from a commercial processing plant. Samples were used to measure pH, sarcomere length, proteolysis, calpain activity, collagenase activity, collagen content, collagen crosslinks density, and connective tissue peak transitional temperature. Exudate was also collected from each sample to evaluate free calcium concentration. The SR fraction of the samples was separated and utilized for proteomic and lipidomic analysis. The WB PM had a higher pH, shorter sarcomeres, lower % of intact troponin-T, more autolyzed µ/m calpain, more activated collagenase, greater collagen content, greater mature collagen crosslinks density, and higher connective tissue peak transitional temperature than the N PM (p ≤ 0.05). Exudate from WB PM had higher levels of free calcium than those from N PM (p < 0.05). Proteomics data revealed an upregulation of calcium transport proteins and a downregulation of proteins responsible for calcium release (p < 0.05) in WB SR. Interestingly, there was an upregulation of phospholipase A2 (PLA2), and cholinesterase exhibited a 7.6-fold increase in WB SR (p < 0.01). Lipidomics data revealed WB SR had less relative % of phosphatidylcholine (PC) and more lysophosphatidylcholine (LPC; p < 0.05). The results indicated that upregulation of calcium transport proteins and downregulation of calcium-release proteins in WB SR may be the muscle's attempt to regulate this proposed excessive signaling of calcium release due to multiple factors, such as upregulation of PLA2 resulting in PC hydrolysis and presence of cholinesterase inhibitors in the system prolonging action potential. In addition, the textural abnormality of WB may be the combined effects of shorter sarcomere length and more collagen with greater crosslink density being deposited in the broiler PM.

3.
Free Radic Biol Med ; 164: 271-284, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33453359

RESUMO

Low-grade inflammation is a critical pathological factor contributing to the development of metabolic disorders. ß-carotene oxygenase 2 (BCO2) was initially identified as an enzyme catalyzing carotenoids in the inner mitochondrial membrane. Mutations in BCO2 are associated with inflammation and metabolic disorders in humans, yet the underlying mechanisms remain unknown. Here, we used loss-of-function approaches in mice and cell culture models to investigate the role of BCO2 in inflammation and metabolic dysfunction. We demonstrated decreases in BCO2 mRNA and protein levels and suppression of mitochondrial respiratory complex I proteins and mitochondrial superoxide dismutase levels in the liver of type 2 diabetic human subjects. Deficiency of BCO2 caused disruption of assembly of the mitochondrial respiratory supercomplexes, such as supercomplex III2+IV in mice, and overproduction of superoxide radicals in primary mouse embryonic fibroblasts. Further, deficiency of BCO2 increased protein carbonylation and populations of natural killer cells and M1 macrophages, and decreased populations of T cells, including CD4+ and/or CD8+ in the bone marrow and white adipose tissues. Elevation of plasma inflammatory cytokines and adipose tissue hypertrophy and inflammation were also characterized in BCO2 deficient mice. Moreover, BCO2 deficient mice were more susceptible to high-fat diet-induced obesity and hyperglycemia. Double knockout of BCO2 and leptin receptor genes caused a significantly greater elevation of the fasting blood glucose level in mice at 4 weeks of age, compared to the age- and sex-matched leptin receptor knockout. Finally, administration of Mito-TEMPO, a mitochondrial specific antioxidant attenuated systemic low-grade inflammation induced by BCO2 deficiency. Collectively, these findings suggest that BCO2 is essential for mitochondrial respiration and metabolic homeostasis in mammals. Loss or decreased expression of BCO2 leads to mitochondrial oxidative stress, low-grade inflammation, and the subsequent development of metabolic disorders.


Assuntos
Dioxigenases , beta Caroteno , Animais , Dioxigenases/metabolismo , Fibroblastos/metabolismo , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo
4.
Insect Biochem Mol Biol ; 127: 103489, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33096211

RESUMO

The tobacco hornworm, Manduca sexta, is a lepidopteran model species widely used to study insect biochemical processes. Some of its larval hemolymph proteins are well studied, and a detailed proteomic analysis of larval plasma proteins became available in 2016, revealing features such as correlation with transcriptome data, formation of immune complexes, and constitution of an immune signaling system in hemolymph. It is unclear how the composition of these proteins may change in other developmental stages. In this paper, we report the proteomes of cell-free hemolymph from prepupae, pupae on day 4 and day 13, and young adults. Of the 1824 proteins identified, 907 have a signal peptide and 410 are related to immunity. Drastic changes in abundance of the storage proteins, lipophorins and vitellogenin, for instance, reflect physiological differences among prepupae, pupae, and adults. Considerably more proteins lacking signal peptide are present in the late pupae, suggesting that plasma contains relatively low concentrations of intracellular components released from remodeling tissues during metamorphosis. The defense proteins detected include 43 serine proteases and 11 serine protease homologs. Some of these proteins are members of the extracellular immune signaling network found in feeding larvae, and others may play additional roles and hence confer new features in the later life stages. In summary, the proteins and their levels revealed in this study, together with their transcriptome data, are expected to stimulate focused explorations of humoral immunity and other physiological systems in wandering larvae, pupae, and adults of M. sexta and shed light upon functional and comparative genomic research in other holometabolous insects.


Assuntos
Hemolinfa/química , Proteínas de Insetos/genética , Manduca/química , Metamorfose Biológica , Proteoma/genética , Animais , Proteínas de Insetos/metabolismo , Larva/química , Larva/genética , Larva/crescimento & desenvolvimento , Manduca/genética , Manduca/crescimento & desenvolvimento , Proteoma/metabolismo , Pupa/química , Pupa/genética , Pupa/crescimento & desenvolvimento
5.
Fungal Biol ; 124(2): 91-101, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32008757

RESUMO

Arbuscular Mycorrhizal fungi (AMF, Glomeromycota) form obligate symbiotic associations with the roots of most terrestrial plants. Our understanding of the molecular mechanisms enabling AMF propagation and AMF-host interaction is currently incomplete. Analysis of AMF proteomes could yield important insights and generate hypotheses on the nature and mechanism of AMF-plant symbiosis. Here, we examined the extraradical mycelium proteomic profile of the arbuscular mycorrhizal fungus Rhizophagus irregularis grown on Ri T-DNA transformed Chicory roots in a root organ culture setting. Our analysis detected 529 different peptides that mapped to 474 translated proteins in the R. irregularis genome. R. irregularis proteome was characterized by a high proportion of proteins (9.9 % of total, 21.4 % of proteins with functional prediction) mediating a wide range of signal transduction processes, e.g. Rho1 and Bmh2, Ca-signaling (calmodulin, and Ca channel protein), mTOR signaling (MAP3K7, and MAPKAP1), and phosphatidate signaling (phospholipase D1/2) proteins, as well as members of the Ras signaling pathway. In addition, the proteome contained an unusually large proportion (53.6 %) of hypothetical proteins, the majority of which (85.8 %) were Glomeromycota-specific. Forty-eight proteins were predicted to be surface/membrane associated, including multiple hypothetical proteins of yet-unrecognized functions. However, no evidence for the overproduction of specific proteins, previously implicated in promoting soil health and aggregation was obtained. Finally, the comparison of R. irregularis proteome to previously published AMF proteomes identified a core set of pathways and processes involved in AMF growth. We conclude that R. irregularis growth on chicory roots requires the activation of a wide range of signal transduction pathways, the secretion of multiple novel hitherto unrecognized Glomeromycota-specific proteins, and the expression of a wide array of surface-membrane associated proteins for cross kingdom cell-to-cell communications.


Assuntos
Fungos , Micélio/metabolismo , Proteoma , Comunicação Celular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Fungos/metabolismo , Genoma Fúngico , Glomeromycota/genética , Glomeromycota/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Micorrizas/metabolismo , Raízes de Plantas/microbiologia , Técnicas de Embriogênese Somática de Plantas/métodos , Plantas/microbiologia , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais , Simbiose/genética , Simbiose/fisiologia
6.
Insect Biochem Mol Biol ; 116: 103261, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31698082

RESUMO

A network of serine proteases (SPs) and their non-catalytic homologs (SPHs) activates prophenoloxidase (proPO), Toll pathway, and other insect immune responses. However, integration and conservation of the network and its control mechanisms have not yet been fully understood. Here we present evidence that these responses are initiated through a conserved serine protease and negatively regulated by serpins in two species, Manduca sexta and Anopheles gambiae. We have shown that M. sexta serpin-12 reduces the proteolytic activation of HP6, HP8, proPO activating proteases (PAPs), SPHs, and POs in larval hemolymph, and we hypothesized that these effects are due to the inhibition of the immune pathway-initiating protease HP14. To test whether these changes are due to HP14 inhibition, we isolated a covalent complex of HP14 with serpin-12 from plasma using polyclonal antibodies against the HP14 protease domain or against serpin-12, and confirmed formation of the complex by 2D-electrophoresis, immunoblotting, and mass spectrometry. Upon recognition of bacterial peptidoglycans or fungal ß-1,3-glucan, the zymogen proHP14 became active HP14, which formed an SDS-stable complex with serpin-12 in vitro. Activation of proHP21 by HP14 was suppressed by serpin-12, consistent with the decrease in steps downstream of HP21, proteolytic activation of proPAP3, proSPH1/2 and proPO in hemolymph. Guided by the results of phylogenetic analysis, we cloned and expressed A. gambiae proSP217 (an ortholog of HP14) and core domains of A. gambiae serpin-11 and -17. The recombinant SP217 zymogen became active during expression, with cleavage between Tyr394 and Ile395. Both MsHP14 and AgSP217 cleaved MsSerpin-12 and AgSRPN11 at Leu*Ser (P1*P1') and formed complexes in vitro. ProPO activation in M. sexta plasma increased after recombinant AgSP217 had been added, indicating that it may function in a similar manner as the endogenous initiating protease HP14. Based on these data, we propose that inhibition of an initiating modular protease by a serpin may be a common mechanism in holometabolous insects to regulate proPO activation and other protease-induced immune responses.


Assuntos
Anopheles/imunologia , Manduca/imunologia , Serpinas/metabolismo , Animais , Anopheles/metabolismo , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Hemolinfa/enzimologia , Proteínas de Insetos/metabolismo , Larva/genética , Larva/imunologia , Larva/metabolismo , Manduca/genética , Manduca/metabolismo , Peptidoglicano/farmacologia , Filogenia , Serina Proteases/genética , Serina Proteases/metabolismo , beta-Glucanas/farmacologia
7.
Vet Microbiol ; 203: 73-80, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28619171

RESUMO

Mannheimia haemolytica is a major bacterial contributor to bovine respiratory disease complex that costs the livestock industry a billion dollars a year in USA. Commercial vaccines are only partially efficacious under field conditions. Earlier studies found that outer membrane protein preparations and culture supernatants can induce immune responses that enhance resistance to challenge by M. haemolytica strains. The objective of this study was to characterize secretome of two M. haemolytica stains grown under two different media. Bacteria-free concentrated supernatants from M. haemolytica culture was subjected to LC-MS/MS. The secretome of M. haemolytica from both strains yielded 923 proteins. Using bioinformatic tools, 283 were identified as secreted proteins. Further breakdown of 283 proteins showed that 114 (40.2%), 184 (65.0%), 138(48.7%), 151 (53.3%) and 172 (60.7%) were characterized as secreted proteins by SignalP 4.1, SecretomeP 2.0, LipoP, Phobius, and PRED-TAT, respectively. A total of 95 (33.56%) proteins were characterized as being secreted via non-classical pathway as opposed to the majority that were secreted in signal peptide dependent pathway. The demonstrated proteins include all previously immunologically characterized M. haemolytica proteins. The potential of using secretome analysis in the design and development of a multivalent vaccine is discussed.


Assuntos
Complexo Respiratório Bovino/diagnóstico , Biologia Computacional , Mannheimia haemolytica/isolamento & purificação , Infecções por Pasteurellaceae/veterinária , Proteômica , Animais , Complexo Respiratório Bovino/microbiologia , Bovinos , Cromatografia Líquida/veterinária , Infecções por Pasteurellaceae/diagnóstico , Infecções por Pasteurellaceae/microbiologia , Espectrometria de Massas em Tandem/veterinária
8.
Mol Pharm ; 14(7): 2224-2235, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28505457

RESUMO

Red blood cells (RBCs) express a variety of immunomodulatory markers that enable the body to recognize them as self. We have shown that RBC membrane glycophorin A (GPA) receptor can mediate membrane attachment of protein therapeutics. A critical knowledge gap is whether attaching drug-encapsulated nanoparticles (NPs) to GPA and modification with cell-penetrating peptide (CPP) will impact binding, oxygenation, and the induction of cellular stress. The objective of this study was to formulate copolymer-based NPs containing model fluorescent-tagged bovine serum albumin (BSA) with GPA-specific targeting ligands such as ERY1 (ENPs), single-chain variable antibody (scFv TER-119, SNPs), and low-molecular-weight protamine-based CPP (LNPs) and to determine their biocompatibility using a variety of complementary high-throughput in vitro assays. Experiments were conducted by coincubating NPs with RBCs at body temperature, and biocompatibility was evaluated by Raman spectroscopy, hemolysis, complement lysis, and oxidative stress assays. Data suggested that LNPs effectively targeted RBCs, conferring 2-fold greater uptake in RBCs compared to ENPs and SNPs. Raman spectroscopy results indicated no adverse effect of NP attachment or internalization on the oxygenation status of RBCs. Cellular stress markers such as glutathione, malondialdehyde, and catalase were within normal limits, and complement-mediated lysis due to NPs was negligible in RBCs. Under the conditions tested, our data demonstrates that molecular targeting of the RBC membrane is a feasible translational strategy for improving drug pharmacokinetics and that the proposed high-throughput assays can prescreen diverse NPs for preclinical and clinical biocompatibility.


Assuntos
Peptídeos Penetradores de Células/química , Nanopartículas/química , Polímeros/química , Animais , Bovinos , Peptídeos Penetradores de Células/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Eritrócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Soroalbumina Bovina/química , Análise Espectral Raman
9.
Dev Comp Immunol ; 74: 110-124, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28431895

RESUMO

Anopheles gambiae is a major vector of human malaria and its immune system in part determines the fate of ingested parasites. Proteins, hemocytes and fat body in hemolymph are critical components of this system, mediating both humoral and cellular defenses. Here we assessed differences in the hemolymph proteomes of water- and E. coli-pricked mosquito larvae by a gel-LC-MS approach. Among the 1756 proteins identified, 603 contained a signal peptide but accounted for two-third of the total protein amount on the quantitative basis. The sequence homology search indicated that 233 of the 1756 may be related to defense. In general, we did not detect substantial differences between the control and induced plasma samples in terms of protein numbers or levels. Protein distributions in the gel slices suggested post-translational modifications (e.g. proteolysis) and formation of serpin-protease complexes and high Mr immune complexes. Based on the twenty-five most abundant proteins, we further suggest that major functions of the larval hemolymph are storage, transport, and immunity. In summary, this study provided first data on constitution, levels, and possible functions of hemolymph proteins in the mosquito larvae, reflecting complex changes occurring in the fight against E. coli infection.


Assuntos
Anopheles/imunologia , Vetores Aracnídeos/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Hemócitos/metabolismo , Hemolinfa/metabolismo , Malária/imunologia , Animais , Anopheles/microbiologia , Complexo Antígeno-Anticorpo/metabolismo , Hemócitos/imunologia , Hemócitos/microbiologia , Hemolinfa/imunologia , Hemolinfa/microbiologia , Humanos , Imunidade , Larva , Plasmodium/fisiologia , Proteólise , Proteoma , Serpinas/metabolismo
10.
AMB Express ; 6(1): 103, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27807811

RESUMO

Biomass is abundant, renewable and useful for biofuel production as well as chemical priming for plastics and composites. Deconstruction of biomass by enzymes is perceived as recalcitrant while an inclusive breakdown mechanism remains to be discovered. Fungi such as Myceliophthora thermophila M77 appear to decompose natural biomass sources quite well. This work reports on this fungus fermentation property while producing cellulolytic enzymes using natural biomass substrates. Little hydrolytic activity was detected, insufficient to explain the large amount of biomass depleted in the process. Furthermore, this work makes a comprehensive account of extracellular proteins and describes how secretomes redirect their qualitative protein content based on the nature and chemistry of the nutritional source. Fungus grown on purified cellulose or on natural biomass produced secretomes constituted by: cellobiohydrolases, cellobiose dehydrogenase, ß-1,3 glucanase, ß-glucosidases, aldose epimerase, glyoxal oxidase, GH74 xyloglucanase, galactosidase, aldolactonase and polysaccharide monooxygenases. Fungus grown on a mixture of purified hemicellulose fractions (xylans, arabinans and arabinoxylans) produced many enzymes, some of which are listed here: xylosidase, mixed ß-1,3(4) glucanase, ß-1,3 glucanases, ß-glucosidases, ß-mannosidase, ß-glucosidases, galactosidase, chitinases, polysaccharide lyase, endo ß-1,6 galactanase and aldose epimerase. Secretomes produced on natural biomass displayed a comprehensive set of enzymes involved in hydrolysis and oxidation of cellulose, hemicellulose-pectin and lignin. The participation of oxidation reactions coupled to lignin decomposition in the breakdown of natural biomass may explain the discrepancy observed for cellulose decomposition in relation to natural biomass fermentation experiments.

11.
Mater Sci Eng C Mater Biol Appl ; 62: 524-31, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26952455

RESUMO

The aim of the present study was to evaluate a library of poly-L-lysine (PLL)-graft (g)-polyethylene glycol (PEG) copolymers for the ability to encapsulate effectively a model protein, bovine serum albumin (BSA), and to characterize the stability and protein function of the resulting nanoparticle. A library of nine grafted copolymers was produced by varying PLL molecular weight and PEG grafting ratio. Electrostatic self-assembly of the protein and the grafted copolymer drove encapsulation. The formation of protein/polymer nanoparticles with a core/shell structure was confirmed using PAGE, dynamic light scattering, and electron microscopy. Encapsulation of the BSA into nanoparticles was strongly dependent on the copolymer-to-protein mass ratio, PEG grafting ratio, and PLL molecular weight. A copolymer-to-protein mass ratio of 7:1 and higher was generally required for high levels of encapsulation, and under these conditions, no loss of protein activity was observed. Copolymer characteristics also influenced nanoparticle resistance to polyanions and protease degradation. The results indicate that a copolymer of 15-30 kDa PLL, with a PEG grafting ratio of 10:1, is most promising for protein delivery.


Assuntos
Nanopartículas/química , Polietilenoglicóis/química , Polilisina/análogos & derivados , Soroalbumina Bovina/química , Animais , Cátions/química , Bovinos , Química Farmacêutica , Difusão Dinâmica da Luz , Eletroforese em Gel de Poliacrilamida , Microscopia Eletrônica , Peso Molecular , Polilisina/química , Proteólise
12.
Mol Cell Proteomics ; 15(4): 1176-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26811355

RESUMO

Manduca sextais a lepidopteran model widely used to study insect physiological processes, including innate immunity. In this study, we explored the proteomes of cell-free hemolymph from larvae injected with a sterile buffer (C for control) or a mixture of bacteria (I for induced). Of the 654 proteins identified, 70 showed 1.67 to >200-fold abundance increases after the immune challenge; 51 decreased to 0-60% of the control levels. While there was no strong parallel between plasma protein levels and their transcript levels in hemocytes or fat body, the mRNA level changes (i.e.I/C ratios of normalized read numbers) in the tissues concurred with their protein level changes (i.e.I/C ratios of normalized spectral counts) with correlation coefficients of 0.44 and 0.57, respectively. Better correlations support that fat body contributes a more significant portion of the plasma proteins involved in various aspects of innate immunity. Consistently, ratios of mRNA and protein levels were better correlated for immunity-related proteins than unrelated ones. There is a set of proteins whose apparent molecular masses differ considerably from the calculatedMr's, suggestive of posttranslational modifications. In addition, some lowMrproteins were detected in the range of 80 to >300 kDa on a reducing SDS-polyacrylamide gel, indicating the existence of highMrcovalent complexes. We identified 30 serine proteases and their homologs, 11 of which are known members of an extracellular immune signaling network. Along with our quantitative transcriptome data, the protein identification, inducibility, and association provide leads toward a focused exploration of humoral immunity inM. sexta.


Assuntos
Imunidade Inata , Proteínas de Insetos/sangue , Manduca/microbiologia , Proteoma/metabolismo , Transcriptoma , Animais , Corpo Adiposo/fisiologia , Regulação da Expressão Gênica , Hemolinfa/metabolismo , Larva/imunologia , Larva/microbiologia , Manduca/crescimento & desenvolvimento , Manduca/imunologia
13.
Pharm Res ; 33(5): 1191-203, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26812966

RESUMO

PURPOSE: Nanoparticle (NP) attachment to biocompatible secondary carriers such as red blood cell (RBC) can prolong blood residence time of drug molecules and help create next-generation nanotherapeutics. However, little is known about the impact of RBC-targeted NPs on erythrocyte function. METHODS: The objectives of this study were to develop and characterize in vitro a novel poly-L-lysine (PLL) and polyethylene glycol (PEG) copolymer-based NP containing fluorescent-tagged bovine serum albumin (BSA), and conjugated with ERY1, a 12 amino acid peptide with high affinity for the RBC membrane protein glycophorin A (ENP). RESULTS: Confocal and flow cytometry data suggest that ENPs efficiently and irreversibly bind to RBC, with approximately 70% of erythrocytes bound after 24 h in a physiologic flow loop model compared to 10% binding of NPs without ERY1. Under these conditions, synthesized ENPs were not toxic to the RBCs. The rheological parameters at the applied shear. (0-15 Pa) were not influenced by ENP attachment to the RBCs. However, at high concentration, the strong affinity of ENPs to the glycophorin-A reduced the deformability of the RBC. CONCLUSIONS: ENPs can be efficiently attached to the RBCs without adversely affecting cellular function, and this may potentially enhance circulatory half-life of drug molecules.


Assuntos
Sistemas de Liberação de Medicamentos , Membrana Eritrocítica/metabolismo , Glicoforinas/metabolismo , Nanopartículas/metabolismo , Peptídeos/metabolismo , Animais , Bovinos , Deformação Eritrocítica , Eritrócitos/citologia , Eritrócitos/metabolismo , Camundongos , Nanopartículas/química , Peptídeos/química , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Polilisina/química , Polilisina/metabolismo , Soroalbumina Bovina/administração & dosagem
14.
Biochem Pharmacol ; 98(3): 531-9, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26456723

RESUMO

Effective use of exogenous human BChE as a bioscavenger for organophosphorus toxicants (OPs) is hindered by its limited availability and rapid clearance. Complexes made from recombinant human BChE (rhBChE) and copolymers may be useful in addressing these problems. We used in vitro approaches to compare enzyme activity, sensitivity to inhibition, stability and bioscavenging capacity of free enzyme and copolymer-rhBChE complexes (C-BCs) based on one of nine different copolymers, from combinations of three molecular weights (MW) of poly-L-lysine (PLL; high MW, 30-70 kDa; medium MW, 15-30 kDa; low MW, 4-15 kDa) and three grafting ratios of poly(ethylene glycol) (PEG; 2:1, 10:1, 20:1). Retarded protein migration into acrylamide gels stained for BChE activity was noted with all copolymers as the copolymer-to-protein ratio was increased. BChE activity of C-BCs was lower relative to free enzyme, with the 2:1 grafting ratio showing generally greater reduction. Free enzyme and C-BCs showed relatively similar in vitro sensitivity to inhibition by paraoxon, but use of the 20:1 grafting ratio led to lower potencies. Through these screening assays we selected three C-BCs (high, medium and low MW; 10:1 grafting) for further characterizations. BChE activity was higher in C-BCs made with the medium and low compared to high MW-based copolymer. C-BCs generally showed higher stability than free enzyme when maintained for long periods at 37 °C or following incubation with chymotrypsin. Free enzyme and C-BCs were similarly effective at inactivating paraoxon in vitro. While these results are promising for further development, additional studies are needed to evaluate in vivo performance.


Assuntos
Butirilcolinesterase/farmacologia , Polímeros/química , Butirilcolinesterase/química , Cátions , Inibidores da Colinesterase/toxicidade , Estabilidade Enzimática , Humanos , Técnicas In Vitro , Paraoxon/toxicidade , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
15.
Insect Biochem Mol Biol ; 47: 46-54, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24565606

RESUMO

The tobacco hornworm, Manduca sexta, has been used as a biochemical model for studying insect physiological processes. While the transcriptomes of its fat body, hemocytes, midgut, and antennae have been examined in several studies, limited information is available for proteins in tissues, cells, or body fluids of this insect. In keeping pace with the M. sexta genome project, we launched a pilot study to identify differences in the peptidome of cell-free hemolymph samples from larvae injected with buffer or a mixture of bacteria. At 24 h after injection, plasma was collected and treated with 50% acetonitrile to precipitate large proteins. The supernatants, containing peptides (<25 kDa) and other stable proteins (>25 kDa), were digested with trypsin and analyzed by nano-liquid chromatography and nano-electrospray tandem mass spectrometry (nanoLC-MS/MS) on an LTQ Orbitrap XL mass spectrometer. Known M. sexta cDNA sequences and gene transcripts from the draft genome were translated in silico to generate a database of polypeptides (i.e. peptides and proteins) in this species. By searching the database, we identified 268 hemolymph polypeptides, 50 of which showed 1.67-200 fold abundance increases after the immune challenge, as judged by significant changes in normalized spectral counts between the control and induced plasma. These included a total of 33 antimicrobial peptides (attacins, cecropins, defensins, diapausins, gallerimycin, gloverin, lebocins, lysozymes), pattern recognition receptors, and proteinase inhibitors. Although there was no strong parallel (correlation coefficients: -0.13, 0.11, 0.39 and 0.62) between plasma peptide levels and their transcript levels in control or induced hemocytes or fat body, we observed the mRNA level changes in hemocytes and fat body concurred with their peptide level changes with correlation coefficients of 0.67 and 0.76, respectively. These data suggest that fat body contributed a significant portion of the plasma polypeptides involved in various aspects of innate immunity after the bacterial injection.


Assuntos
Proteínas de Insetos/análise , Larva/imunologia , Manduca/genética , Peptídeos/análise , Transcriptoma , Sequência de Aminoácidos , Animais , Imunidade Inata , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Larva/química , Larva/genética , Larva/microbiologia , Manduca/química , Manduca/imunologia , Manduca/microbiologia , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/imunologia
16.
Insect Biochem Mol Biol ; 42(5): 305-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22245367

RESUMO

The lipid droplets (LDs) are intracellular organelles mainly dedicated to the storage and provision of fatty acids. To accomplish these functions the LDs interact with other organelles and cytosolic proteins. In order to explore possible correlations between the physiological states of cells and the protein composition of LDs we have determined and compared the proteomic profiles of lipid droplets isolated from the fat bodies of 5th-instar larvae and adult Manduca sexta insects and from ovaries. These LD-rich tissues represent three clearly distinct metabolic states in regard to lipid metabolism: 1) Larval fat body synthesizes fatty acids (FA) and accumulates large amounts as triglyceride (TG); 2) Fat body from adult insects provides FA to support reproduction and flight; 3) Ovaries do not synthesize FA, but accumulate considerable amounts of TG in LDs. Major qualitative and semi-quantitative variations in the protein compositions of the LDs isolated from these three tissues were observed by MS/MS and partially validated by immuno-blotting. The differences observed included changes in the abundance of lipid droplet specific proteins, cytosolic proteins, mitochondrial proteins and also proteins associated with the machinery of protein synthesis. These results suggest that changes in the interaction of LDs with other organelles and cytosolic proteins are tightly related to the physiological state of cells. Herein, we summarize and compare the protein compositions of three subtypes of LDs and also describe for the first time the proteomic profile of LDs from an insect ovary. The compositions and compositional differences found among the LDs are discussed to provide a platform for future studies on the role of LDs, and their associated proteins, in cellular metabolism.


Assuntos
Corpo Adiposo/metabolismo , Proteínas de Insetos/metabolismo , Metabolismo dos Lipídeos , Manduca/metabolismo , Animais , Apolipoproteínas/metabolismo , Corpo Adiposo/ultraestrutura , Feminino , Histonas/metabolismo , Larva/metabolismo , Lipoproteínas/metabolismo , Manduca/química , Manduca/crescimento & desenvolvimento , Proteínas Mitocondriais/metabolismo , Ovário/metabolismo , Proteoma , Proteômica , Receptores Citoplasmáticos e Nucleares/metabolismo
17.
ACS Chem Biol ; 6(8): 800-7, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21548602

RESUMO

The Hsp90 chaperone machine is required for the folding, activation, and/or stabilization of more than 50 proteins directly related to malignant progression. Hsp90 contains small molecule binding sites at both its N- and C-terminal domains; however, limited structural and biochemical data regarding the C-terminal binding site is available. In this report, the small molecule binding site in the Hsp90 C-terminal domain was revealed by protease fingerprinting and photoaffinity labeling utilizing LC-MS/MS. The identified site was characterized by generation of a homology model for hHsp90α using the SAXS open structure of HtpG and docking the bioactive conformation of NB into the generated model. The resulting model for the bioactive conformation of NB bound to Hsp90α is presented herein.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Novobiocina/química , Novobiocina/farmacologia , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/química , Espectrometria de Massas em Tandem
18.
Arch Biochem Biophys ; 473(1): 42-7, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18342616

RESUMO

Triglycerides (TG) stored in lipid droplets (LDs) are the main energy reserve in all animals. The mechanism by which animals mobilize TG is complex and not fully understood. Several proteins surrounding the LDs have been implicated in TG homeostasis such as mammalian perilipin A and insect lipid storage proteins (Lsd). Most of the knowledge on LD-associated proteins comes from studies using cells or LDs leaving biochemical properties of these proteins uncharacterized. Here we describe the purification of recombinant Lsd1 and its reconstitution with lipids to form lipoprotein complexes suitable for functional and structural studies. Lsd1 in the lipid bound state is a predominately alpha-helical protein. Using lipoprotein complexes containing triolein it is shown that PKA mediated phosphorylation of Lsd1 promoted a 1.7-fold activation of the main fat body lipase demonstrating the direct link between Lsd1 phosphorylation and activation of lipolysis. Serine 20 was identified as the Lsd1-phosphorylation site triggering this effect.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/fisiologia , Lipoproteínas/química , Lipoproteínas/fisiologia , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/fisiologia , Sequência de Aminoácidos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Corpo Adiposo/enzimologia , Lipase/química , Lipase/fisiologia , Lipólise , Lipoproteínas/genética , Lipoproteínas/metabolismo , Manduca , Dados de Sequência Molecular , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Fosfatidilgliceróis/química , Fosfatidilgliceróis/fisiologia , Fosforilação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Relação Estrutura-Atividade
19.
J Biol Chem ; 279(33): 34101-6, 2004 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-15190055

RESUMO

A serine proteinase cascade in insect hemolymph mediates prophenoloxidase activation, a defense mechanism against pathogen or parasite infection. Little is known regarding its initiating proteinase or how this enzyme is activated in response to invading microorganisms. We have isolated from the tobacco hornworm, Manduca sexta, a cDNA encoding a modular protein designated hemolymph proteinase 14 (HP14). It contains five low density lipoprotein receptor class A repeats, a Sushi domain, a unique Cys-rich region, and a proteinase-catalytic domain. The HP14 mRNA exists in fat body and hemocytes of the naive larvae, and its level increases significantly at 24 h after a bacterial challenge. We expressed proHP14 with a carboxyl-terminal hexahistidine tag in a baculovirus/insect cell system and detected the recombinant protein in two forms. The 87-kDa protein was primarily intracellular, whereas the 75-kDa form was present in the medium. Interaction with peptidoglycan resulted in proteolytic processing of the purified zymogen and generation of an amidase activity. Supplementation of hemolymph with proHP14 greatly enhanced prophenoloxidase activation in response to Micrococcus luteus. These data suggest that proHP14 is a pattern recognition protein that binds to bacteria and autoactivates and triggers the prophenoloxidase activation system in the hemolymph of M. sexta.


Assuntos
Catecol Oxidase/química , Endopeptidases/química , Endopeptidases/fisiologia , Precursores Enzimáticos/química , Proteínas de Insetos , Serina Endopeptidases/química , Sequência de Aminoácidos , Animais , Baculoviridae/metabolismo , Sequência de Bases , Cisteína/química , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Hemolinfa/química , Immunoblotting , Insetos , Lipoproteínas LDL/metabolismo , Manduca , Micrococcus luteus/metabolismo , Dados de Sequência Molecular , Peptidoglicano/química , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA