Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(2): 354-357, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270133

RESUMO

To assess the susceptibility of elk (Cervus canadensis) and mule deer (Odocoileus hemionus) to SARS-CoV-2, we performed experimental infections in both species. Elk did not shed infectious virus but mounted low-level serologic responses. Mule deer shed and transmitted virus and mounted pronounced serologic responses and thus could play a role in SARS-CoV-2 epidemiology.


Assuntos
COVID-19 , Cervos , Animais , COVID-19/veterinária , SARS-CoV-2 , Equidae
2.
EBioMedicine ; 92: 104574, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148585

RESUMO

BACKGROUND: The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS: We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS: Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION: These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING: This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.


Assuntos
COVID-19 , Proteínas de Transporte , Cricetinae , Humanos , Camundongos , Ratos , Animais , Vacinas contra COVID-19 , SARS-CoV-2 , Subunidades Proteicas , COVID-19/prevenção & controle , Austrália , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
Emerg Infect Dis ; 28(9): 1852-1855, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35830965

RESUMO

We assessed 2 wild canid species, red foxes (Vulpes vulpes) and coyotes (Canis latrans), for susceptibility to SARS-CoV-2. After experimental inoculation, red foxes became infected and shed infectious virus. Conversely, experimentally challenged coyotes did not become infected; therefore, coyotes are unlikely to be competent hosts for SARS-CoV-2.


Assuntos
COVID-19 , Coiotes , Animais , Raposas , SARS-CoV-2
4.
Virology ; 568: 49-55, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35114499

RESUMO

West Nile virus (WNV) overwintering is poorly understood and likely multifactorial. Interest in alligators as a potential amplifying host arose when it was shown that they develop viremias theoretically sufficient to infect mosquitoes. We examined potential ways in which alligators may contribute to the natural ecology of WNV. We experimentally demonstrated that alligators are capable of WNV amplification with subsequent mosquito infection and transmission capability, that WNV-infected mosquitoes readily infect alligators and that water can serve as a source of infection for alligators but does not easily serve as in intermediate means for transmission between birds and alligators. These findings indicate potential mechanisms for maintenance of WNV outside of the primary bird-mosquito transmission cycle.


Assuntos
Jacarés e Crocodilos/virologia , Culicidae/virologia , Mosquitos Vetores/virologia , Replicação Viral , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/fisiologia , Animais , Aves/virologia , Chlorocebus aethiops , Reservatórios de Doenças/virologia , Células Vero , Zoonoses Virais , Febre do Nilo Ocidental/virologia
5.
NPJ Vaccines ; 6(1): 122, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671047

RESUMO

Early in the SARS-CoV-2 pandemic concerns were raised regarding infection of new animal hosts and the effect on viral epidemiology. Infection of other animals could be detrimental by causing clinical disease, allowing further mutations, and bares the risk for the establishment of a non-human reservoir. Cats were the first reported animals susceptible to natural and experimental infection with SARS-CoV-2. Given the concerns these findings raised, and the close contact between humans and cats, we aimed to develop a vaccine candidate that could reduce SARS-CoV-2 infection and in addition to prevent spread among cats. Here we report that a Replicon Particle (RP) vaccine based on Venezuelan equine encephalitis virus, known to be safe and efficacious in a variety of animal species, could induce neutralizing antibody responses in guinea pigs and cats. The design of the SARS-CoV-2 spike immunogen was critical in developing a strong neutralizing antibody response. Vaccination of cats was able to induce high neutralizing antibody responses, effective also against the SARS-CoV-2 B.1.1.7 variant. Interestingly, in contrast to control animals, the infectious virus could not be detected in oropharyngeal or nasal swabs of vaccinated cats after SARS-CoV-2 challenge. Correspondingly, the challenged control cats spread the virus to in-contact cats whereas the vaccinated cats did not transmit the virus. The results show that the RP vaccine induces protective immunity preventing SARS-CoV-2 infection and transmission. These data suggest that this RP vaccine could be a multi-species vaccine useful to prevent infection and spread to and between animals should that approach be required.

6.
Emerg Infect Dis ; 27(8): 2073-2080, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34286685

RESUMO

Wild animals have been implicated as the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but it is largely unknown how the virus affects most wildlife species and if wildlife could ultimately serve as a reservoir for maintaining the virus outside the human population. We show that several common peridomestic species, including deer mice, bushy-tailed woodrats, and striped skunks, are susceptible to infection and can shed the virus in respiratory secretions. In contrast, we demonstrate that cottontail rabbits, fox squirrels, Wyoming ground squirrels, black-tailed prairie dogs, house mice, and racoons are not susceptible to SARS-CoV-2 infection. Our results expand the knowledge base of susceptible species and provide evidence that human-wildlife interactions could result in continued transmission of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Animais Selvagens , Suscetibilidade a Doenças , Humanos , Mamíferos , Camundongos
7.
Am J Trop Med Hyg ; 104(3): 1048-1054, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33534764

RESUMO

Powassan virus (POWV) is a tick-borne virus maintained in sylvatic cycles between mammalian wildlife hosts and ticks (primarily Ixodes spp.). There are two currently recognized lineages, POWV-lineage 1 (POWV-L1) and deer tick virus (DTV; lineage 2), both of which can cause fatal neurologic disease in humans. Increased numbers of human case reports in the northeastern and north central United States in recent years have fueled questions into POWV epidemiology. We inoculated three candidate wildlife POWV reservoir hosts, groundhogs (Marmota monax), striped skunks (Mephitis mephitis), and fox squirrels (Sciurus niger), with either POWV-L1 or DTV. Resulting viremia, tissue tropism, and pathology were minimal in most inoculated individuals of all three species, with low (peak titer range, 101.7-103.3 plaque-forming units/mL serum) or undetectable viremia titers, lack of detection in tissues except for low titers in spleen, and seroconversion in most individuals by 21 days postinoculation (DPI). Pathology was limited and most commonly consisted of mild inflammation in the brain of POWV-L1- and DTV-inoculated skunks on four and 21 DPI, respectively. These results reveal variation in virulence and host competence among wild mammalian species, and a likely limited duration of host infectiousness to ticks during enzootic transmission cycles. However, POWV can transmit rapidly from tick to host, and tick co-feeding may be an additional transmission mechanism. The rare and low-level detections of viremia in these three, common, wild mammal species suggest that vector-host dynamics should continue to be explored, along with eco-epidemiological aspects of enzootic POWV transmission in different regions and virus lineages.


Assuntos
Animais Selvagens/virologia , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/virologia , Ixodes/virologia , Mamíferos/virologia , Marmota/virologia , Mephitidae/virologia , Sciuridae/virologia , Animais , Estados Unidos/epidemiologia
8.
Proc Natl Acad Sci U S A ; 117(42): 26382-26388, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32994343

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached nearly every country in the world with extraordinary person-to-person transmission. The most likely original source of the virus was spillover from an animal reservoir and subsequent adaptation to humans sometime during the winter of 2019 in Wuhan Province, China. Because of its genetic similarity to SARS-CoV-1, it is probable that this novel virus has a similar host range and receptor specificity. Due to concern for human-pet transmission, we investigated the susceptibility of domestic cats and dogs to infection and potential for infected cats to transmit to naive cats. We report that cats are highly susceptible to infection, with a prolonged period of oral and nasal viral shedding that is not accompanied by clinical signs, and are capable of direct contact transmission to other cats. These studies confirm that cats are susceptible to productive SARS-CoV-2 infection, but are unlikely to develop clinical disease. Further, we document that cats developed a robust neutralizing antibody response that prevented reinfection following a second viral challenge. Conversely, we found that dogs do not shed virus following infection but do seroconvert and mount an antiviral neutralizing antibody response. There is currently no evidence that cats or dogs play a significant role in human infection; however, reverse zoonosis is possible if infected owners expose their domestic pets to the virus during acute infection. Resistance to reinfection holds promise that a vaccine strategy may protect cats and, by extension, humans.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Animais , Animais Domésticos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Betacoronavirus/imunologia , COVID-19 , Gatos , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Modelos Animais de Doenças , Cães , Feminino , Masculino , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/transmissão , SARS-CoV-2 , Eliminação de Partículas Virais
9.
PLoS Negl Trop Dis ; 14(3): e0008166, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203536

RESUMO

Flaviviruses such as yellow fever, dengue or Zika viruses are responsible for significant human and veterinary diseases worldwide. These viruses contain an RNA genome, prone to mutations, which enhances their potential to emerge as pathogens. Bamaga virus (BgV) is a mosquito-borne flavivirus in the yellow fever virus group that we have previously shown to be host-restricted in vertebrates and horizontally transmissible by Culex mosquitoes. Here, we aimed to characterise BgV host-restriction and to investigate the mechanisms involved. We showed that BgV could not replicate in a wide range of vertebrate cell lines and animal species. We determined that the mechanisms involved in BgV host-restriction were independent of the type-1 interferon response and RNAse L activity. Using a BgV infectious clone and two chimeric viruses generated as hybrids between BgV and West Nile virus, we demonstrated that BgV host-restriction occurred post-cell entry. Notably, BgV host-restriction was shown to be temperature-dependent, as BgV replicated in all vertebrate cell lines at 34°C but only in a subset at 37°C. Serial passaging of BgV in Vero cells resulted in adaptive mutants capable of efficient replication at 37°C. The identified mutations resulted in amino acid substitutions in NS4A-S124F, NS4B-N244K and NS5-G2C, all occurring close to a viral protease cleavage site (NS4A/2K and NS4B/NS5). These mutations were reverse engineered into infectious clones of BgV, which revealed that NS4B-N244K and NS5-G2C were sufficient to restore BgV replication in vertebrate cells at 37°C, while NS4A-S124F further increased replication efficiency. When these mutant viruses were injected into immunocompetent mice, alongside BgV and West Nile virus chimeras, infection and neurovirulence were enhanced as determined by clinical scores, seroconversion, micro-neutralisation, viremia, histopathology and immunohistochemistry, confirming the involvement of these residues in the attenuation of BgV. Our studies identify a new mechanism of host-restriction and attenuation of a mosquito-borne flavivirus.


Assuntos
Infecções por Flavivirus/virologia , Flavivirus/genética , Flavivirus/patogenicidade , Mutação , Proteínas não Estruturais Virais/genética , Animais , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular , Chlorocebus aethiops , Culicidae/virologia , Modelos Animais de Doenças , Endorribonucleases/metabolismo , Feminino , Flavivirus/fisiologia , Infecções por Flavivirus/metabolismo , Infecções por Flavivirus/patologia , Células HEK293 , Humanos , Masculino , Camundongos , Mosquitos Vetores/virologia , Células Vero , Virulência/genética , Replicação Viral , Vírus do Nilo Ocidental/genética
10.
Transbound Emerg Dis ; 66(3): 1301-1305, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30740920

RESUMO

European starlings (Sturnus vulgaris), house sparrows (Passer domesticus) and rock pigeons (Columba livia) are all wild birds commonly found in large numbers in and around human dwellings and domestic livestock operations. This study evaluated the susceptibility of these species to three strains of highly pathogenic avian influenza virus (HP AIV) clade 2.3.4.4 isolated in the U.S.. Experimental infection of European starlings and rock pigeons did not result in any overt signs attributable to AIV infection and no virus shedding was detected from the oral and cloacal routes. House sparrows shed by the oral route and exhibited limited mortality. Individuals from all three species seroconverted following infection. These data suggest that none of these birds are a likely potential bridge host for future HP AIV outbreaks but that their seroconversion may be a useful surveillance tool for detection of circulating H5 HP AIV.


Assuntos
Surtos de Doenças/veterinária , Reservatórios de Doenças/veterinária , Vírus da Influenza A Subtipo H5N2/isolamento & purificação , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Influenza Aviária/epidemiologia , Animais , Animais Selvagens , Aves , Columbidae , Reservatórios de Doenças/virologia , Humanos , Vírus da Influenza A Subtipo H5N2/imunologia , Vírus da Influenza A Subtipo H5N2/patogenicidade , Vírus da Influenza A Subtipo H5N8/imunologia , Vírus da Influenza A Subtipo H5N8/patogenicidade , Vírus da Influenza A Subtipo H5N8/fisiologia , Influenza Aviária/virologia , Soroconversão , Pardais , Estorninhos , Estados Unidos/epidemiologia , Eliminação de Partículas Virais
11.
Am J Trop Med Hyg ; 98(3): 841-844, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29313469

RESUMO

Chikungunya virus is an emerging arbovirus of significant human-health concern. Little is known about its sylvatic cycle, including whether ectothermic vertebrates are permissive to infection. In this study, individuals from ten species of reptiles and amphibians were inoculated with chikungunya virus and samples of blood were tested to characterize viremia and seroconversion. Viremia was not detected in cane toads, house geckos, or American alligators, but most of the green iguanas, red-eared sliders, ball and Burmese pythons, leopard frogs, Texas toads, and garter snakes developed viremia. Peak virus titers in serum of up to 4.5, 4.7, and 5.1 log10 plaque-forming units per milliliter were observed for garter snakes, ball pythons, and Texas toads, respectively. These results add to those of other studies that have suggested a possible role for ectothermic vertebrates in the ecology of arbovirus maintenance and transmission in nature.


Assuntos
Anfíbios/virologia , Febre de Chikungunya/veterinária , Vírus Chikungunya/patogenicidade , Reservatórios de Doenças/virologia , Répteis/virologia , Animais , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Vírus Chikungunya/crescimento & desenvolvimento , Especificidade de Hospedeiro , Humanos , Texas/epidemiologia , Carga Viral
12.
Viruses ; 8(8)2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27548203

RESUMO

The Middle East respiratory syndrome coronavirus (MERS-CoV) was first recognized in 2012 and can cause severe disease in infected humans. Dromedary camels are the reservoir for the virus, although, other than nasal discharge, these animals do not display any overt clinical disease. Data from in vitro experiments suggest that other livestock such as sheep, goats, and horses might also contribute to viral transmission, although field data has not identified any seropositive animals. In order to understand if these animals could be infected, we challenged young goats and horses and adult sheep with MERS-CoV by intranasal inoculation. Minimal or no virus shedding was detected in all of the animals. During the four weeks following inoculation, neutralizing antibodies were detected in the young goats, but not in sheep or horses.


Assuntos
Infecções por Coronavirus/veterinária , Especificidade de Hospedeiro , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Eliminação de Partículas Virais , Animais , Anticorpos Antivirais/sangue , Infecções por Coronavirus/virologia , Cabras , Cavalos , Ovinos
13.
Emerg Infect Dis ; 22(6): 1031-7, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27070385

RESUMO

Middle East respiratory syndrome coronavirus is a recently emerged pathogen associated with severe human disease. Zoonotic spillover from camels appears to play a major role in transmission. Because of logistic difficulties in working with dromedaries in containment, a more manageable animal model would be desirable. We report shedding and transmission of this virus in experimentally infected alpacas (n = 3) or those infected by contact (n = 3). Infectious virus was detected in all infected animals and in 2 of 3 in-contact animals. All alpacas seroconverted and were rechallenged 70 days after the original infection. Experimentally infected animals were protected against reinfection, and those infected by contact were partially protected. Necropsy specimens from immunologically naive animals (n = 3) obtained on day 5 postinfection showed virus in the upper respiratory tract. These data demonstrate efficient virus replication and animal-to-animal transmission and indicate that alpacas might be useful surrogates for camels in laboratory studies.


Assuntos
Camelus/virologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Replicação Viral , Zoonoses , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Biópsia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Modelos Animais de Doenças , Humanos , Imunidade Humoral , Imuno-Histoquímica , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Avaliação de Sintomas , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA