Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 25(9): 1710-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27376968

RESUMO

The heterodimeric transcription elongation factor Spt4/Spt5 (Spt4/5) tightly associates with RNAPII to regulate both transcriptional elongation and co-transcriptional pre-mRNA processing; however, the mechanisms by which Spt4/5 acts are poorly understood. Recent studies of the human and Drosophila Spt4/5 complexes indicate that they can bind nucleic acids in vitro. We demonstrate here that yeast Spt4/5 can bind in a sequence-specific manner to single stranded RNA containing AAN repeats. Furthermore, we show that the major protein determinants for RNA-binding are Spt4 together with the NGN domain of Spt5 and that the KOW domains are not required for RNA recognition. These findings attribute a new function to a domain of Spt4/5 that associates directly with RNAPII, making significant steps towards elucidating the mechanism behind transcriptional control by Spt4/5.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Drosophila melanogaster , Humanos , Proteínas Nucleares/genética , Domínios Proteicos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética
2.
Mol Cell Biol ; 35(19): 3354-69, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26217010

RESUMO

The eukaryotic Spt4-Spt5 heterodimer forms a higher-order complex with RNA polymerase II (and I) to regulate transcription elongation. Extensive genetic and functional data have revealed diverse roles of Spt4-Spt5 in coupling elongation with chromatin modification and RNA-processing pathways. A mechanistic understanding of the diverse functions of Spt4-Spt5 is hampered by challenges in resolving the distribution of functions among its structural domains, including the five KOW domains in Spt5, and a lack of their high-resolution structures. We present high-resolution crystallographic results demonstrating that distinct structures are formed by the first through third KOW domains (KOW1-Linker1 [K1L1] and KOW2-KOW3) of Saccharomyces cerevisiae Spt5. The structure reveals that K1L1 displays a positively charged patch (PCP) on its surface, which binds nucleic acids in vitro, as shown in biochemical assays, and is important for in vivo function, as shown in growth assays. Furthermore, assays in yeast have shown that the PCP has a function that partially overlaps that of Spt4. Synthesis of our results with previous evidence suggests a model in which Spt4 and the K1L1 domain of Spt5 form functionally overlapping interactions with nucleic acids upstream of the transcription bubble, and this mechanism may confer robustness on processes associated with transcription elongation.


Assuntos
Proteínas Cromossômicas não Histona/química , Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/química , Sequência de Aminoácidos , Sequência de Bases , Proteínas Cromossômicas não Histona/fisiologia , Sequência Consenso , Cristalografia por Raios X , DNA Fúngico/química , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Homologia Estrutural de Proteína , Transcrição Gênica , Fatores de Elongação da Transcrição/fisiologia
3.
PLoS One ; 10(3): e0118725, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25742016

RESUMO

Mycobacteriophages--viruses of mycobacterial hosts--are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages--Corndog, Catdawg, Dylan, Firecracker, and YungJamal--designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange.


Assuntos
DNA Viral , Genoma Viral , Micobacteriófagos/genética , Variação Genética , Genômica , Filogenia
4.
Mol Biosyst ; 10(12): 3179-87, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25257345

RESUMO

Investigating the mechanisms of action (MOAs) of bioactive compounds and the deconvolution of their cellular targets is an important and challenging undertaking. Drug resistance in model organisms such as S. cerevisiae has long been a means for discovering drug targets and MOAs. Strains are selected for resistance to a drug of interest, and the resistance mutations can often be mapped to the drug's molecular target using classical genetic techniques. Here we demonstrate the use of next generation sequencing (NGS) to identify mutations that confer resistance to two well-characterized drugs, benomyl and rapamycin. Applying NGS to pools of drug-resistant mutants, we develop a simple system for ranking single nucleotide polymorphisms (SNPs) based on their prevalence in the pool, and for ranking genes based on the number of SNPs that they contain. We clearly identified the known targets of benomyl (TUB2) and rapamycin (FPR1) as the highest-ranking genes under this system. The highest-ranking SNPs corresponded to specific amino acid changes that are known to confer resistance to these drugs. We also found that by screening in a pdr1Δ null background strain that lacks a transcription factor regulating the expression of drug efflux pumps, and by pre-screening mutants in a panel of unrelated anti-fungal agents, we were able to mitigate against the selection of multi-drug resistance (MDR) mutants. We call our approach "Mutagenesis to Uncover Targets by deep Sequencing", or "MUTseq", and show through this proof-of-concept study its potential utility in characterizing MOAs and targets of novel compounds.


Assuntos
Farmacorresistência Fúngica Múltipla/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Benomilo/farmacologia , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Polimorfismo de Nucleotídeo Único , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA , Sirolimo/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Protein Expr Purif ; 100: 54-60, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24859675

RESUMO

Spt4/5 is a hetero-dimeric transcription elongation factor that can both inhibit and promote transcription elongation by RNA polymerase II (RNAPII). However, Spt4/5's mechanism of action remains elusive. Spt5 is an essential protein and the only universally-conserved RNAP-associated transcription elongation factor. The protein contains multiple Kyrpides, Ouzounis and Woese (KOW) domains. These domains, in other proteins, are thought to bind RNA although there is little direct evidence in the literature to support such a function in Spt5. This could be due, at least in part, to difficulties in expressing and purifying recombinant Spt5. When expressed in Escherichia coli (E. coli), Spt5 is innately insoluble. Here we report a new approach for the successful expression and purification of milligram quantities of three different multi-KOW domain complexes of Saccharomyces cerevisiae Spt4/5 for use in future functional studies. Using the E. coli strain Rosetta2 (DE3) we have developed strategies for co-expression of Spt4 and multi-KOW domain Spt5 complexes from the bi-cistronic pET-Duet vector. In a second strategy, Spt4/5 was expressed via co-transformation of Spt4 in the vector pET-M11 with Spt5 ubiquitin fusion constructs in the vector pHUE. We characterized the multi-KOW domain Spt4/5 complexes by Western blot, limited proteolysis, circular dichroism, SDS-PAGE and size exclusion chromatography-multiangle light scattering and found that the proteins are folded with a Spt4:Spt5 hetero-dimeric stoichiometry of 1:1. These expression constructs encompass a larger region of Spt5 than has previously been reported, and will provide the opportunity to elucidate the biological function of the multi-KOW containing Spt5.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/isolamento & purificação , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/isolamento & purificação , Ubiquitina/genética , Ubiquitina/isolamento & purificação , Proteínas Cromossômicas não Histona/química , Clonagem Molecular/métodos , Escherichia coli/genética , Proteínas Nucleares/química , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/química , Elongação da Transcrição Genética , Fatores de Elongação da Transcrição/química , Ubiquitina/química
6.
mBio ; 5(1): e01051-13, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24496795

RESUMO

UNLABELLED: Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students' interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training. IMPORTANCE: Engagement of undergraduate students in scientific research at early stages in their careers presents an opportunity to excite students about science, technology, engineering, and mathematics (STEM) disciplines and promote continued interests in these areas. Many excellent course-based undergraduate research experiences have been developed, but scaling these to a broader impact with larger numbers of students is challenging. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunting Advancing Genomics and Evolutionary Science (SEA-PHAGES) program takes advantage of the huge size and diversity of the bacteriophage population to engage students in discovery of new viruses, genome annotation, and comparative genomics, with strong impacts on bacteriophage research, increased persistence in STEM fields, and student self-identification with learning gains, motivation, attitude, and career aspirations.


Assuntos
Bactérias/virologia , Bacteriófagos/genética , Genômica/educação , Microbiologia/educação , Adulto , Feminino , Humanos , Masculino , Estudantes , Adulto Jovem
7.
J Virol ; 88(5): 2461-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335314

RESUMO

UNLABELLED: Genomic analysis of a large set of phages infecting the common host Mycobacterium smegmatis mc(2)155 shows that they span considerable genetic diversity. There are more than 20 distinct types that lack nucleotide similarity with each other, and there is considerable diversity within most of the groups. Three newly isolated temperate mycobacteriophages, Bongo, PegLeg, and Rey, constitute a new group (cluster M), with the closely related phages Bongo and PegLeg forming subcluster M1 and the more distantly related Rey forming subcluster M2. The cluster M mycobacteriophages have siphoviral morphologies with unusually long tails, are homoimmune, and have larger than average genomes (80.2 to 83.7 kbp). They exhibit a variety of features not previously described in other mycobacteriophages, including noncanonical genome architectures and several unusual sets of conserved repeated sequences suggesting novel regulatory systems for both transcription and translation. In addition to containing transfer-messenger RNA and RtcB-like RNA ligase genes, their genomes encode 21 to 24 tRNA genes encompassing complete or nearly complete sets of isotypes. We predict that these tRNAs are used in late lytic growth, likely compensating for the degradation or inadequacy of host tRNAs. They may represent a complete set of tRNAs necessary for late lytic growth, especially when taken together with the apparent lack of codons in the same late genes that correspond to tRNAs that the genomes of the phages do not obviously encode. IMPORTANCE: The bacteriophage population is vast, dynamic, and old and plays a central role in bacterial pathogenicity. We know surprisingly little about the genetic diversity of the phage population, although metagenomic and phage genome sequencing indicates that it is great. Probing the depth of genetic diversity of phages of a common host, Mycobacterium smegmatis, provides a higher resolution of the phage population and how it has evolved. Three new phages constituting a new cluster M further expand the diversity of the mycobacteriophages and introduce novel features. As such, they provide insights into phage genome architecture, virion structure, and gene regulation at the transcriptional and translational levels.


Assuntos
Família Multigênica , Micobacteriófagos/classificação , Micobacteriófagos/genética , Mycobacterium smegmatis/virologia , RNA de Transferência/genética , RNA Viral , Composição de Bases , Sequência de Bases , Códon , Sequência Conservada , Ordem dos Genes , Tamanho do Genoma , Genoma Viral , Sequências Repetidas Invertidas , Lisogenia/genética , Micobacteriófagos/ultraestrutura , Fases de Leitura Aberta , Filogenia , RNA de Transferência/química , Sequências Repetitivas de Ácido Nucleico , Alinhamento de Sequência , Vírion/genética , Vírion/ultraestrutura , Montagem de Vírus/genética
8.
Biochim Biophys Acta ; 1829(1): 105-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22982195

RESUMO

In all domains of life, elongating RNA polymerases require the assistance of accessory factors to maintain their processivity and regulate their rate. Among these elongation factors, the Spt5/NusG factors stand out. Members of this protein family appear to be the only transcription accessory proteins that are universally conserved across all domains of life. In archaea and eukaryotes, Spt5 associates with a second protein, Spt4. In addition to regulating elongation, the eukaryotic Spt4-Spt5 complex appears to couple chromatin modification states and RNA processing to transcription elongation. This review discusses the experimental bases for our current understanding of Spt4-Spt5 function and recent studies that are beginning to elucidate the structure of Spt4-Spt5/RNA polymerase complexes and mechanism of Spt4-Spt5 action. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.


Assuntos
Elongação da Transcrição Genética/fisiologia , Fatores de Elongação da Transcrição/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Estrutura Quaternária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Homologia de Sequência de Aminoácidos , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
9.
PLoS Genet ; 8(7): e1002811, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22807688

RESUMO

Chd proteins are ATP-dependent chromatin remodeling enzymes implicated in biological functions from transcriptional elongation to control of pluripotency. Previous studies of the Chd1 subclass of these proteins have implicated them in diverse roles in gene expression including functions during initiation, elongation, and termination. Furthermore, some evidence has suggested a role for Chd1 in replication-independent histone exchange or assembly. Here, we examine roles of Chd1 in replication-independent dynamics of histone H3 in both Drosophila and yeast. We find evidence of a role for Chd1 in H3 dynamics in both organisms. Using genome-wide ChIP-on-chip analysis, we find that Chd1 influences histone turnover at the 5' and 3' ends of genes, accelerating H3 replacement at the 5' ends of genes while protecting the 3' ends of genes from excessive H3 turnover. Although consistent with a direct role for Chd1 in exchange, these results may indicate that Chd1 stabilizes nucleosomes perturbed by transcription. Curiously, we observe a strong effect of gene length on Chd1's effects on H3 turnover. Finally, we show that Chd1 also affects histone modification patterns over genes, likely as a consequence of its effects on histone replacement. Taken together, our results emphasize a role for Chd1 in histone replacement in both budding yeast and Drosophila melanogaster, and surprisingly they show that the major effects of Chd1 on turnover occur at the 3' ends of genes.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA , Proteínas de Drosophila , Histonas , Nucleossomos , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição , Regiões 3' não Traduzidas/genética , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Cromossomos Politênicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
10.
ChemMedChem ; 7(5): 761-5, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22378491

RESUMO

Follow my lead! NSC 670224, previously shown to be toxic to Saccharomyces cerevisiae at low micromolar concentrations, potentially acts via a mechanism of action related to that of tamoxifen (NSC 180973), breast cancer drug. The structure of NSC 670224, previously thought to be a 2,4-dichloro arene, was established as the 3,4-dichloro arene, and a focused library of analogues were synthesized and biologically evaluated.


Assuntos
Antineoplásicos Hormonais/química , Compostos de Benzil/química , Cicloexanos/química , Bibliotecas de Moléculas Pequenas/química , Antineoplásicos Hormonais/farmacologia , Compostos de Benzil/síntese química , Morte Celular , Cicloexanos/síntese química , Relação Dose-Resposta a Droga , Feminino , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Saccharomyces cerevisiae/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Tamoxifeno/química
11.
Mol Cell ; 43(2): 161-3, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21777806

RESUMO

Transcription elongation factor NusG/Spt5 spans the central cleft of RNA polymerase and functionally competes with transcription initiation factors. This work highlights the RNA polymerase clamp as a target for regulation and points to dynamic interactions between initiation and elongation machineries.

13.
Structure ; 16(11): 1649-58, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19000817

RESUMO

The Spt4-Spt5 complex is an essential RNA polymerase II elongation factor found in all eukaryotes and important for gene regulation. We report here the crystal structure of Saccharomyces cerevisiae Spt4 bound to the NGN domain of Spt5. This structure reveals that Spt4-Spt5 binding is governed by an acid-dipole interaction between Spt5 and Spt4. Mutations that disrupt this interaction disrupt the complex. Residues forming this pivotal interaction are conserved in the archaeal homologs of Spt4 and Spt5, which we show also form a complex. Even though bacteria lack a Spt4 homolog, the NGN domains of Spt5 and its bacterial homologs are structurally similar. Spt4 is located at a position that may help to maintain the functional conformation of the following KOW domains in Spt5. This structural and evolutionary perspective of the Spt4-Spt5 complex and its homologs suggest that it is an ancient, core component of the transcription elongation machinery.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/química , Sequência de Aminoácidos , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Cromossômicas não Histona/genética , Sequência Conservada , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/genética , Ligação Proteica , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Fatores de Elongação da Transcrição/genética
14.
Mol Cell ; 31(1): 2-4, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18614040

RESUMO

In this issue of Molecular Cell, Fleming et al. (2008) show that histone H2B ubiquitylation and FACT function interdependently to facilitate nucleosome reassembly during transcription elongation, thereby demonstrating that histone posttranslational modifications can provide important but transient transcriptional signaling cues.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinação , Cromatina/metabolismo , Lisina/metabolismo , Metilação , Ligação Proteica , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica
16.
PLoS Comput Biol ; 1(4): e39, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16172632

RESUMO

Splicing is an important process for regulation of gene expression in eukaryotes, and it has important functional links to other steps of gene expression. Two examples of these linkages include Ceg1, a component of the mRNA capping enzyme, and the chromatin elongation factors Spt4-5, both of which have recently been shown to play a role in the normal splicing of several genes in the yeast Saccharomyces cerevisiae. Using a genomic approach to characterize the roles of Spt4-5 in splicing, we used splicing-sensitive DNA microarrays to identify specific sets of genes that are mis-spliced in ceg1, spt4, and spt5 mutants. In the context of a complex, nested, experimental design featuring 22 dye-swap array hybridizations, comprising both biological and technical replicates, we applied five appropriate statistical models for assessing differential expression between wild-type and the mutants. To refine selection of differential expression genes, we then used a robust model-synthesizing approach, Differential Expression via Distance Synthesis, to integrate all five models. The resultant list of differentially expressed genes was then further analyzed with regard to select attributes: we found that highly transcribed genes with long introns were most sensitive to spt mutations. QPCR confirmation of differential expression was established for the limited number of genes evaluated. In this paper, we showcase splicing array technology, as well as powerful, yet general, statistical methodology for assessing differential expression, in the context of a real, complex experimental design. Our results suggest that the Spt4-Spt5 complex may help coordinate splicing with transcription under conditions that present kinetic challenges to spliceosome assembly or function.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/metabolismo , Splicing de RNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Bases de Dados Genéticas , Modelos Genéticos , Mutação/genética , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética
17.
Curr Opin Genet Dev ; 13(2): 119-26, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12672488

RESUMO

The elongation of transcripts by RNA polymerase II (RNAPII) is subject to regulation and requires the services of a host of accessory proteins. Although the biochemical mechanisms underlying elongation and its regulation remain obscure, recent progress sets the stage for rapid advancement in our understanding of this phase of transcription. High-resolution crystal structures will allow focused analyses of RNAPII in all its functional states. Several recent studies suggest specific roles for the C-terminal heptad repeats of the largest subunit of RNAPII in elongation. Proteomic approaches are being used to identify new transcription-elongation factors and to define interactions between elongation factors and RNAPII. Finally, a combination of genetic analysis and the localization of factors on transcribed chromatin is being used to confirm a role for factors in elongation.


Assuntos
RNA Polimerase II/metabolismo , RNA/biossíntese , Animais , DNA/metabolismo , Humanos , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases/metabolismo , Estrutura Terciária de Proteína , Fatores de Transcrição/metabolismo
18.
EMBO J ; 22(8): 1846-56, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12682017

RESUMO

Transcription in eukaryotes is influenced by the chromatin state of the template, and chromatin remodeling factors have well-documented roles in regulating transcription initiation by RNA polymerase (pol) II. Chromatin also influences transcription elongation; however, little is known about the role of chromatin remodeling factors in this process. Here, we present evidence that the Saccharomyces cerevisiae chromatin remodeling factor Chd1 functions during transcription elongation. First, we identified Chd1 in a two-hybrid screen for proteins that interact with Rtf1, a member of the Paf1 complex that associates with RNA pol II and regulates transcription elongation. Secondly, we show through co-immunoprecipitation studies that Chd1 also interacts with components of two essential elongation factors, Spt4-Spt5 and Spt16-Pob3. Thirdly, we demonstrate that deletion of CHD1 suppresses a cold-sensitive spt5 mutation that is also suppressed by defects in the Paf1 complex and RNA pol II. Finally, we demonstrate that Chd1, Rtf1 and Spt5 associate with actively transcribed regions of chromatin. Collectively, these findings suggest an important role for Chd1 and chromatin remodeling in the control of transcription elongation.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
19.
Biochim Biophys Acta ; 1577(2): 276-86, 2002 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-12213658

RESUMO

Chromatin forms a general, repeating barrier to elongation of transcripts by eukaryotic RNA polymerases. Recent studies of nucleosome structure and histone modifications reveal a set of likely mechanisms for control of elongation through chromatin. Genetic and biochemical studies of transcription have identified a set of accessory factors for transcript elongation by RNA polymerase II (Pol II) that appear to function in the context of chromatin. The C-terminal repeated domain (CTD) of Pol II may also play a role in regulating elongation through chromatin.


Assuntos
Nucleoproteínas/genética , Elongação Traducional da Cadeia Peptídica , Transcrição Gênica/fisiologia , Cromatina/genética , Regulação da Expressão Gênica , Nucleossomos/química , Nucleossomos/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae , Moldes Genéticos , Fatores Genéricos de Transcrição/química , Fatores Genéricos de Transcrição/metabolismo , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo
20.
EMBO J ; 21(7): 1764-74, 2002 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11927560

RESUMO

We are using biochemical and genetic approaches to study Rtf1 and the Spt4-Spt5 complex, which independently have been implicated in transcription elongation by RNA polymerase II. Here, we report a remarkable convergence of these studies. First, we purified Rtf1 and its associated yeast proteins. Combining this approach with genetic analysis, we show that Rtf1 and Leo1, a protein of unknown function, are members of the RNA polymerase II-associated Paf1 complex. Further analysis revealed allele-specific genetic interactions between Paf1 complex members, Spt4-Spt5, and Spt16-Pob3, the yeast counterpart of the human elongation factor FACT. In addition, we independently isolated paf1 and leo1 mutations in an unbiased genetic screen for suppressors of a cold-sensitive spt5 mutation. These genetic interactions are supported by physical interactions between the Paf1 complex, Spt4-Spt5 and Spt16-Pob3. Finally, we found that defects in the Paf1 complex cause sensitivity to 6-azauracil and diminished PUR5 induction, properties frequently associated with impaired transcription elongation. Taken together, these data suggest that the Paf1 complex functions during the elongation phase of transcription in conjunction with Spt4-Spt5 and Spt16-Pob3.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , RNA Polimerase II/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA