Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140830, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056711

RESUMO

Membrane fouling is a critical bottleneck to the widespread adoption of membrane separation processes. It diminishes the membrane permeability and results in high operational energy costs. The current study presents optimizing the operating parameters of a novel rotating biological contactor (RBC) integrated with an external membrane (RBC + ME) that combines membrane technology with an RBC. In the RBC + ME, the membrane panel is placed external to the bioreactor. Response surface methodology (RSM) is applied to optimize the membrane permeability through three operating parameters (hydraulic retention time (HRT), rotational disk speed, and sludge retention time (SRT)). The artificial neural networks (ANN) and support vector machine (SVM) are implemented to depict the statistical modelling approach using experimental data sets. The results showed that all three operating parameters contribute significantly to the performance of the bioreactor. RSM revealed an optimum value of 40.7 rpm disk rotational speed, 18 h HRT and 12.4 d SRT, respectively. An ANN model with ten hidden layers provides the highest R2 value, while the SVM model with the Bayesian optimizer provides the highest R2. RSM, ANN, and SVM models reveal the highest R-square values of 0.97, 0.99, and 0.99, respectively. Machine learning techniques help predict the model based on the experimental results and training data sets.


Assuntos
Redes Neurais de Computação , Máquina de Vetores de Suporte , Teorema de Bayes , Reatores Biológicos , Esgotos
2.
Environ Res ; 246: 118027, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159670

RESUMO

The study explores co-gasification of palm oil decanter cake and alum sludge, investigating the correlation between input variables and syngas production. Operating variables, including temperature (700-900 °C), air flow rate (10-30 mL/min), and particle size (0.25-2 mm), were optimized to maximize syngas production using air as the gasification agent in a fixed bed horizontal tube furnace reactor. Response Surface Methodology with the Box-Behnken design was used employed for optimization. Fourier Transformed Infra-Red (FTIR) and Field Emission Scanning Electron Microscopic (FESEM) analyses were used to analyze the char residue. The results showed that temperature and particle size have positive effects, while air flow rate has a negative effect on the syngas yield. The optimal CO + H2 composition of 39.48 vol% was achieved at 900 °C, 10 mL/min air flow rate, and 2 mm particle size. FTIR analysis confirmed the absence of C─Cl bonds and the emergence of Si─O bonds in the optimized char residue, distinguishing it from the raw sample. FESEM analysis revealed a rich porous structure in the optimized char residue, with the presence of calcium carbonate (CaCO3) and aluminosilicates. These findings provide valuable insights for sustainable energy production from biomass wastes.


Assuntos
Compostos de Alúmen , Gases , Esgotos , Gases/química , Óleo de Palmeira , Temperatura , Biomassa
3.
Membranes (Basel) ; 13(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37623765

RESUMO

Integrated fixed-film activated sludge (IFAS) is a hybrid wastewater treatment process that combines suspended and attached growth. The current review provides an overview of the effect of operating parameters on the performance of IFAS and their implications for wastewater treatment. The operating parameters examined include hydraulic retention time (HRT), solids retention time (SRT), dissolved oxygen (DO) levels, temperature, nutrient loading rates, and aeration. Proper control and optimization of these parameters significantly enhance the treatment efficiency and pollutant removal. Longer HRT and appropriate SRT contribute to improved organic matter and nutrient removal. DO levels promote the growth of aerobic microorganisms, leading to enhanced organic matter degradation. Temperature influences microbial activity and enzymatic reactions, impacting treatment efficiency. Nutrient loading rates must be carefully managed to avoid system overload or inhibition. Effective aeration ensures uniform distribution of wastewater and biofilm carriers, optimizing contact between microorganisms and pollutants. IFAS has been used in water reuse applications, providing a sustainable and reliable water source for non-potable uses. Overall, IFAS has proven to be an effective and efficient treatment process that can provide high-quality effluent suitable for discharge or reuse. Understanding the effects of these operating parameters helps to optimize the design and operation for efficient wastewater treatment. Further research is needed to explore the interactions between different parameters, evaluate their impact under varying wastewater characteristics, and develop advanced control strategies for improved performance and sustainability.

4.
Chemosphere ; 330: 138452, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36965529

RESUMO

Combustion of palm oil decanter cake (PODC) is a propitious alternative waste to energy means. However, the mono-combustion of PODC prompt severe ash slagging behavior which give rise to reduction in heat transfer and also shorten the lifespan of combustion reactors. In this study, alum sludge (AS) was introduced at different proportion of 30%, 50% and 70% to revamp the slagging characteristics of PODC during combustion. The addition of AS improved ash fusion temperature of PODC during co-combustion as ash fusion temperature increased significantly under high AS dosage. Slagging and fouling indices showed that at 50% AS addition, slagging tendency of the co-combustion ashes can be ignored. The predictive model for PODC-AS combustion showed good correlation coefficient with 0.89. Overall, co-combustion of PODC and AS is an ideal ash related problem-solving route. The proposed PODC slagging preventive method by AS was based on: (1) limited amount of aluminum content in PODC-AS system resulted in development of refractory ash (2) reduction in proportion of basic oxide which act as ash bonding glue played important role in the regulation of slagging (3) reduction of cohesive bond by formation of spongy and porous structure which prevented ash slagging.


Assuntos
Temperatura Alta , Esgotos , Óleo de Palmeira , Temperatura , Cinza de Carvão , Incineração
5.
Polymers (Basel) ; 14(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36236074

RESUMO

Traditional fossil-based plastic usage and disposal has been one of the largest environmental concerns due to its non-biodegradable nature and high energy consumption during the manufacturing process. Poly(lactic acid) (PLA) as a renewable polymer derived from natural sources with properties comparable to classical plastics and low environmental cost has gained much attention as a safer alternative. Abundantly generated orange peel waste is rich in valuable components and there is still limited study on the potential uses of orange peel waste in reinforcing the PLA matrix. In this study, orange peel fine powder (OPP) synthesized from dried orange peel waste was added into PLA solution. PLA/OPP solutions at different OPP loadings, i.e., 0, 10, 20, 40, and 60 wt% were then casted out as thin films through solution casting method. Fourier-transform infrared spectroscopy (FTIR) analysis has shown that the OPP is incorporated into the PLA matrix, with OH groups and C=C stretching from OPP can be observed in the spectra. Tensile test results have reviewed that the addition of OPP has decreased the tensile strength and Young's modulus of PLA, but significantly improve the elongation at break by 49 to 737%. Water contact angle analysis shows that hydrophilic OPP has modified the surface hydrophobicity of PLA with a contact angle ranging from 70.12° to 88.18°, but higher loadings lead to decrease of surface energy. It is proven that addition of OPP improves the biodegradability of PLA, where PLA/60 wt% OPP composite shows the best biodegradation performance after 28 days with 60.43% weight loss. Lastly, all PLA/OPP composites have better absorption in alkaline solution.

6.
Membranes (Basel) ; 12(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36135840

RESUMO

Membrane fouling significantly hinders the widespread application of membrane technology. In the current study, a support vector machine (SVM) and artificial neural networks (ANN) modelling approach was adopted to optimize the membrane permeability in a novel membrane rotating biological contactor (MRBC). The MRBC utilizes the disk rotation mechanism to generate a shear rate at the membrane surface to scour off the foulants. The effect of operational parameters (disk rotational speed, hydraulic retention time (HRT), and sludge retention time (SRT)) was studied on the membrane permeability. ANN and SVM are machine learning algorithms that aim to predict the model based on the trained data sets. The implementation and efficacy of machine learning and statistical approaches have been demonstrated through real-time experimental results. Feed-forward ANN with the back-propagation algorithm and SVN regression models for various kernel functions were trained to augment the membrane permeability. An overall comparison of predictive models for the test data sets reveals the model's significance. ANN modelling with 13 hidden layers gives the highest R2 value of >0.99, and the SVM model with the Bayesian optimizer approach results in R2 values higher than 0.99. The MRBC is a promising substitute for traditional suspended growth processes, which aligns with the stipulations of ecological evolution and environmentally friendly treatment.

7.
Membranes (Basel) ; 12(3)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35323746

RESUMO

A large amount of wastewater is directly discharged into water bodies without treatment, causing surface water contamination. A rotating biological contactor (RBC) is an attached biological wastewater treatment process that offers a low energy footprint. However, its unstable removal efficiency makes it less popular. This study optimized operating parameters in RBC combined with external membrane filtration (RBC-ME), in which the latter acted as a post-treatment step to stabilize the biological performance. Response surface methodology (RSM) was employed to optimize the biological and filtration performance by exploiting three parameters, namely disk rotation, hydraulic retention time (HRT), and sludge retention time (SRT). Results show that the RBC-ME exhibited superior biological treatment capacity and higher effluent quality compared to stand-alone RBC. It attained 87.9 ± 3.2% of chemical oxygen demand, 45.2 ± 0.7% total nitrogen, 97.9 ± 0.1% turbidity, and 98.9 ± 1.1% ammonia removals. The RSM showed a good agreement between the model and the experimental data. The maximum permeability of 144.6 L/m2 h bar could be achieved under the optimum parameters of 36.1 rpm disk rotation, 18 h HRT, and 14.9 d SRT. This work demonstrated the effective use of statistical modeling to enhance RBC-ME system performance to obtain a sustainable and energy-efficient condition.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34360240

RESUMO

Development of strategies for removing heavy metals from aquatic environments is in high demand. Cadmium is one of the most dangerous metals in the environment, even under extremely low quantities. In this study, kenaf and magnetic biochar composite were prepared for the adsorption of Cd2+. The synthesized biochar was characterized using (a vibrating-sample magnetometer VSM), Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption batch study was carried out to investigate the influence of pH, kinetics, isotherm, and thermodynamics on Cd2+ adsorption. The characterization results demonstrated that the biochar contained iron particles that help in improving the textural properties (i.e., surface area and pore volume), increasing the number of oxygen-containing groups, and forming inner-sphere complexes with oxygen-containing groups. The adsorption study results show that optimum adsorption was achieved under pH 5-6. An increase in initial ion concentration and solution temperature resulted in increased adsorption capacity. Surface modification of biochar using iron oxide for imposing magnetic property allowed for easy separation by external magnet and regeneration. The magnetic biochar composite also showed a higher affinity to Cd2+ than the pristine biochar. The adsorption data fit well with the pseudo-second-order and the Langmuir isotherm, with the maximum adsorption capacity of 47.90 mg/g.


Assuntos
Hibiscus , Poluentes Químicos da Água , Adsorção , Cádmio , Carvão Vegetal , Cinética , Fenômenos Magnéticos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA