Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(18): e2300426, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37088797

RESUMO

The ability to synthesize compositionally complex nanostructures rapidly is a key to high-throughput functional materials discovery. In addition to being time-consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high-power-density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high-throughput method opens new pathways toward developing next-generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion.


Assuntos
Ligas , Carbono , Entropia , Termodinâmica , Óxidos , Oxigênio
2.
Sci Adv ; 7(50): eabk1892, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890223

RESUMO

Transition metal dichalcogenides exhibit a variety of electronic behaviors depending on the number of layers and width. Therefore, developing facile methods for their controllable synthesis is of central importance. We found that nickel nanoparticles promote both heterogeneous nucleation of the first layer of molybdenum disulfide and simultaneously catalyzes homoepitaxial tip growth of a second layer via a vapor-liquid-solid (VLS) mechanism, resulting in bilayer nanoribbons with width controlled by the nanoparticle diameter. Simulations further confirm the VLS growth mechanism toward nanoribbons and its orders of magnitude higher growth speed compared to the conventional noncatalytic growth of flakes. Width-dependent Coulomb blockade oscillation observed in the transfer characteristics of the nanoribbons at temperatures up to 60 K evidences the value of this proposed synthesis strategy for future nanoelectronics.

3.
J Phys Chem A ; 125(17): 3589-3599, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33900754

RESUMO

Molecular symmetry is vital to the selection rule of vibrationally resolved electronic transition, particularly when the nuclear dependence of electronic wave function is explicitly treated by including Franck-Condon (FC) factor, Franck-Condon/Herzberg-Teller (FC/HT) interference, and Herzberg-Teller (HT) coupling. Our present study investigated the light absorption spectra of highly symmetric tetracene, pentacene, and hexacene molecules of point-group D2h, as well as their monobrominated derivatives with a lower Cs symmetry. It was found that the symmetry-breaking monobromination allows more vibrational normal modes and their pairs to contribute to FC/HT interference and HT coupling, respectively. Through a projection of a molecule's vibrational normal modes to its irreducible representations, a linear relationship between the FC/HT intensity to the polyacene's size was deduced alongside a quadratic dependence of the HT intensity. Both theoretically derived correlations were well justified by our numerical simulations, which also demonstrated an approximately 20% improvement on the agreement with experimental line shape if the HT theory is adopted to replace the FC approximation. Moreover, for these low-symmetry monobrominated polyacenes, the FC intensity was even weaker than its FC/HT and HT counterparts at some excitation energies, making the HT theory imperative to decipher vibronic coupling, a fundamental driving force behind numerous chemical, biological, and photophysical processes.

4.
J Phys Chem Lett ; 12(12): 3142-3150, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33755478

RESUMO

Vibronic coupling is believed to play an important role in siglet fission, wherein a photoexcited singlet exciton is converted into two triplet excitons. In the present study, we examine the role of vibronic coupling in singlet fission using polarized transient absorption microscopy and ab initio simulations on single-crystalline pentacene. It was found that singlet fission in pentacene is greatly facilitated by the vibrational coherence of a 35.0 cm-1 phonon, where anisotropic coherence persists extensively for a few picoseconds. This coherence-preserving phonon that drives the anisotropic singlet fission is made possible by a unique cross-axial charge-transfer intermediate state. In the same fashion, this phonon was also found to predominantly drive the quantum decohence of a correlated triplet pair to form a decoupled triplet dimer. Moreover, our transient kinetic experimental data illustrates notable directional anisotropicity of the singlet fission rate in single-crystalline pentacene.

5.
J Phys Chem A ; 124(44): 9156-9165, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33103890

RESUMO

The line shape of an electronic spectrum conveys the coupling between electronic and vibrational degrees of freedom. In the present study, the light absorption spectra of single-crystalline pentacene were measured by polarized UV-vis microscopy at 77, 185, and 293 K. The vibronic coupling encoded in each spectrum was resolved by the Herzberg-Teller theory that considers the contributions from the Franck-Condon (FC) factor, Franck-Condo/Herzberg-Teller (FC/HT) interference, and Herzberg-Teller (HT) coupling. Specifically, excitation energies, electronic transition dipole moments, and their nuclear gradients were evaluated by the GW method to ensure numerical accuracy, while the computationally efficient density function theory was employed to determine the optimized structures and vibrational normal modes. For every pair of electronic transition and normal mode that gives rise to a strong vibronic transition intensity, we examined their spatial characteristics by projecting them onto the three crystal axes. It was found that all normal modes strongly coupled to the lowest-lying a-polarized electronic transitions oscillate along axis a, whereas none of their counterparts for the lowest-lying b-polarized electronic transitions is predominantly along axis b. This notable difference on the alignment between the electronic transition and molecular vibration could help the directional control of charge dissociation and/or spin separation. Moreover, a significant variance of the destructive FC/HT interference was discovered with increasing temperatures that can well explain the a-polarized fading tableland near 650 nm. Finally, the importance of HT coupling was corroborated by comparing its intensity with those of FC factor and FC/HT interference. Taken all together, the vibrational dependence of the electronic wave function is critical to resolve the light absorption spectra of single-crystalline pentacene and its temperature effects, facilitating the systematic design of functional optical materials based on pentacene and its derivatives.

6.
ACS Nano ; 14(6): 6570-6581, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32338865

RESUMO

The role of additives in facilitating the growth of conventional semiconducting thin films is well-established. Apparently, their presence is also decisive in the growth of two-dimensional transition metal dichalcogenides (TMDs), yet their role remains ambiguous. In this work, we show that the use of sodium bromide enables synthesis of TMD monolayers via a surfactant-mediated growth mechanism, without introducing liquefaction of metal oxide precursors. We discovered that sodium ions provided by sodium bromide chemically passivate edges of growing molybdenum disulfide crystals, relaxing in-plane strains to suppress 3D islanding and promote monolayer growth. To exploit this growth model, molybdenum disulfide monolayers were directly grown into desired patterns using predeposited sodium bromide as a removable template. The surfactant-mediated growth not only extends the families of metal oxide precursors but also offers a way for lithography-free patterning of TMD monolayers on various surfaces to facilitate fabrication of atomically thin electronic devices.

7.
J Phys Chem Lett ; 11(4): 1261-1267, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31971388

RESUMO

Singlet fission is believed to improve the efficiency of solar energy conversion by breaking up the Shockley-Queisser thermodynamic limit. Understanding of triplet excitons generated by singlet fission is essential for solar energy exploitation. Here we employed transient absorption microscopy to examine dynamical behaviors of triplet excitons. We observed anisotropic recombination of triplet excitons in hexacene single crystals. The triplet exciton relaxations from singlet fission proceed in both geminate and non-geminate recombination. For the geminate recombination, the different rates were attributed to the significant difference in their related energy change based on the Redfield quantum dissipation theory. The process is mainly governed by the electron-phonon interaction in hexacene. On the other hand, the non-geminate recombination is of bimolecular origin through energy transfer. In the triplet-triplet bimolecular process, the rates along the two different optical axes in the a-b crystalline plane differ by a factor of 4. This anisotropy in the triplet-triplet recombination rates was attributed to the interference in the coupling probability of dipole-dipole interactions in the different geometric configurations of hexacene single crystals. Our experimental findings provide new insight into future design of singlet fission materials with desirable triplet exciton exploitations.

8.
Nano Lett ; 19(11): 8118-8124, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31589463

RESUMO

According to density functional theory, monolayer (ML) MoS2 is predicted to possess electrocatalytic activity for the hydrogen evolution reaction (HER) that approaches that of platinum. However, its observed HER activity is much lower, which is widely believed to result from a large Schottky barrier between ML MoS2 and its electrical contact. In order to better understand the role of contact resistance in limiting the performance of ML MoS2 HER electrocatalysts, this study has employed well-defined test platforms that allow for the simultaneous measurement of contact resistance and electrocatalytic activity toward the HER during electrochemical testing. At open circuit potential, these measurements reveal that a 0.5 M H2SO4 electrolyte can act as a strong p-dopant that depletes free electrons in MoS2 and leads to extremely high contact resistance, even if the contact resistance of the as-made device in air is originally very low. However, under applied negative potentials this doping is mitigated by a strong electrolyte-mediated gating effect which can reduce the contact and sheet resistances of properly configured ML MoS2 electrocatalysts by more than 5 orders of magnitude. At potentials relevant to HER, the contact resistance becomes negligible and the performance of MoS2 electrodes is limited by HER kinetics. These findings have important implications for the design of low-dimensional semiconducting electrocatalysts and photocatalysts.

9.
iScience ; 19: 1079-1089, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31522118

RESUMO

Singlet fission is known to improve solar energy utilization by circumventing the Shockley-Queisser limit. The two essential steps of singlet fission are the formation of a correlated triplet pair and its subsequent quantum decoherence. However, the mechanisms of the triplet pair formation and decoherence still remain elusive. Here we examined both essential steps in single crystalline hexacene and discovered remarkable anisotropy of the overall singlet fission rate along different crystal axes. Since the triplet pair formation emerges on the same timescale along both crystal axes, the quantum decoherence is likely responsible for the directional anisotropy. The distinct quantum decoherence rates are ascribed to the notable difference on their associated energy loss according to the Redfield quantum dissipation theory. Our hybrid experimental/theoretical framework will not only further our understanding of singlet fission, but also shed light on the systematic design of new materials for the third-generation solar cells.

10.
Nat Nanotechnol ; 13(7): 602-609, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29736036

RESUMO

With the advent of graphene, the most studied of all two-dimensional materials, many inorganic analogues have been synthesized and are being exploited for novel applications. Several approaches have been used to obtain large-grain, high-quality materials. Naturally occurring ores, for example, are the best precursors for obtaining highly ordered and large-grain atomic layers by exfoliation. Here, we demonstrate a new two-dimensional material 'hematene' obtained from natural iron ore hematite (α-Fe2O3), which is isolated by means of liquid exfoliation. The two-dimensional morphology of hematene is confirmed by transmission electron microscopy. Magnetic measurements together with density functional theory calculations confirm the ferromagnetic order in hematene while its parent form exhibits antiferromagnetic order. When loaded on titania nanotube arrays, hematene exhibits enhanced visible light photocatalytic activity. Our study indicates that photogenerated electrons can be transferred from hematene to titania despite a band alignment unfavourable for charge transfer.

11.
ACS Nano ; 11(10): 9941-9949, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28953362

RESUMO

Elucidating the origin of carbon nanotube chirality is key for realizing their untapped potential. Currently, prevalent theories suggest that catalyst structure originates chirality via an epitaxial relationship. Here we studied chirality abundances of carbon nanotubes grown on floating liquid Ga droplets, which excludes the influence of catalyst features, and compared them with abundances grown on solid Ru nanoparticles. Results of growth on liquid droplets bolsters the intrinsic preference of carbon nuclei toward certain chiralities. Specifically, the abundance of the (11,1)/χ = 4.31° tube can reach up to 95% relative to (9,4)/χ = 17.48°, although they have exactly the same diameter, (9.156 Å). However, the comparative abundances for the pair, (19,3)/χ = 7.2° and (17,6)/χ = 14.5°, with bigger diameter, (16.405 Å), fluctuate depending on synthesis temperature. The abundances of the same pairs of tubes grown on floating solid polyhedral Ru nanoparticles show completely different trends. Analysis of abundances in relation to nucleation probability, represented by a product of the Zeldovich factor and the deviation interval of a growing nuclei from equilibrium critical size, explain the findings. We suggest that the chirality in the nanotube in general is a result of interplay between intrinsic preference of carbon cluster and induction by catalyst structure. This finding can help to build the comprehensive theory of nanotube growth and offers a prospect for chirality-preferential synthesis of carbon nanotubes by the exploitation of liquid catalyst droplets.

12.
Nat Chem ; 9(4): 341-346, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28338681

RESUMO

The absorption of a photon usually creates a singlet exciton (S1) in molecular systems, but in some cases S1 may split into two triplets (2×T1) in a process called singlet fission. Singlet fission is believed to proceed through the correlated triplet-pair 1(TT) state. Here, we probe the 1(TT) state in crystalline hexacene using time-resolved photoemission and transient absorption spectroscopies. We find a distinctive 1(TT) state, which decays to 2×T1 with a time constant of 270 fs. However, the decay of S1 and the formation of 1(TT) occur on different timescales of 180 fs and <50 fs, respectively. Theoretical analysis suggests that, in addition to an incoherent S1→1(TT) rate process responsible for the 180 fs timescale, S1 may couple coherently to a vibronically excited 1(TT) on ultrafast timescales (<50 fs). The coexistence of coherent and incoherent singlet fission may also reconcile different experimental observations in other acenes.

13.
Proc Natl Acad Sci U S A ; 112(47): 14527-32, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26575621

RESUMO

Heteroatom doping is an efficient way to modify the chemical and electronic properties of graphene. In particular, boron doping is expected to induce a p-type (boron)-conducting behavior to pristine (nondoped) graphene, which could lead to diverse applications. However, the experimental progress on atomic scale visualization and sensing properties of large-area boron-doped graphene (BG) sheets is still very scarce. This work describes the controlled growth of centimeter size, high-crystallinity BG sheets. Scanning tunneling microscopy and spectroscopy are used to visualize the atomic structure and the local density of states around boron dopants. It is confirmed that BG behaves as a p-type conductor and a unique croissant-like feature is frequently observed within the BG lattice, which is caused by the presence of boron-carbon trimers embedded within the hexagonal lattice. More interestingly, it is demonstrated for the first time that BG exhibits unique sensing capabilities when detecting toxic gases, such as NO2 and NH3, being able to detect extremely low concentrations (e.g., parts per trillion, parts per billion). This work envisions that other attractive applications could now be explored based on as-synthesized BG.

14.
J Phys Chem Lett ; 6(12): 2232-7, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26266596

RESUMO

The underlying mechanisms for the nucleation of carbon nanotubes as well as their helicity, remain elusive. Here, using van der Waals dispersion force calculations implemented within density functional theory, we study the cap formation, believed to be responsible for the chirality of surface-catalyzed carbon nanotubes. We find the energetics associated with growth along different facets to be independent of the surface orientation and that the growth across an edge along the axis of the metal particle leads to a perfect honeycomb lattice in a curved geometry. The formation of defects in the graphene matrix, which bend the carbon plane, requires that two or more graphene embryos with significantly different growth axis merge. Such scenario is only possible at the front- or back-end of the metal particle where growth symmetry is broken. The graphene embryos reconstruct their hexagonal structure into pentagons, heptagons, and octagons counterpart to accommodate the tube curvature.

15.
Sci Rep ; 4: 6510, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25308821

RESUMO

In order to accommodate an increasing demand for carbon nanotubes (CNTs) with desirable characteristics one has to understand the origin of helicity of their structures. Here, through in situ microscopy we demonstrate that the nucleation of a carbon nanotube is initiated by the formation of the carbon cap. Nucleation begins with the formation of a graphene embryo that is bound between opposite step-edges on the nickel catalyst surface. The embryo grows larger as the step-edges migrate along the surface, leading to the formation of a curved carbon cap when the steps flow across the edges of adjacent facets. Further motion of the steps away from the catalyst tip with attached rims of the carbon cap generates the wall of the nanotube. Density Functional Theory calculations bring further insight into the process, showing that step flow occurs by surface self diffusion of the nickel atoms via a step-edge attachment-detachment mechanism. Since the cap forms first in the sequence of stages involved in growth, we suggest that it originates the helicity of the nanotube. Therefore, the angular distribution of catalyst facets could be exploited as a new parameter for controlling the curvature of the cap and, presumably, the helicity of the nanotube.

16.
Nano Lett ; 14(10): 5625-9, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25171389

RESUMO

Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton-exciton annihilation, a four-body interaction, in this material. Exciton-exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton-exciton annihilation was determined to be (4.3 ± 1.1) × 10(-2) cm(2)/s at room temperature.

17.
Sci Rep ; 3: 1891, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23712556

RESUMO

Growth of vertically aligned carbon nanotube (CNT) forests is highly sensitive to the nature of the substrate. This constraint narrows the range of available materials to just a few oxide-based dielectrics and presents a major obstacle for applications. Using a suspended monolayer, we show here that graphene is an excellent conductive substrate for CNT forest growth. Furthermore, graphene is shown to intermediate growth on key substrates, such as Cu, Pt, and diamond, which had not previously been compatible with nanotube forest growth. We find that growth depends on the degree of crystallinity of graphene and is best on mono- or few-layer graphene. The synergistic effects of graphene are revealed by its endurance after CNT growth and low contact resistances between the nanotubes and Cu. Our results establish graphene as a unique interface that extends the class of substrate materials for CNT growth and opens up important new prospects for applications.


Assuntos
Cobre/química , Grafite/química , Nanotubos de Carbono , Níquel/química , Óxidos/química , Catálise , Eletroquímica , Teste de Materiais , Propriedades de Superfície
18.
ACS Nano ; 7(2): 1100-7, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23343776

RESUMO

The physical state of the catalyst and its impact on the growth of single-walled carbon nanotubes (SWNTs) is the subject of a long-standing debate. We addressed it here using in situ Raman spectroscopy to measure Fe and Ni catalyst lifetimes during the growth of individual SWNTs across a wide range of temperatures (500-1400 °C). The temperature dependence of the Fe catalyst lifetimes underwent a sharp increase around 1100 °C due to a solid-to-liquid phase transition. By comparing experimental results with the metal-carbon phase diagrams, we prove that SWNTs can grow from solid and liquid phase-catalysts, depending on the temperature.

19.
J Phys Chem Lett ; 4(10): 1737-42, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-26282987

RESUMO

Nanomaterials are anticipated to be promising storage media, owing to their high surface-to-mass ratio. The high hydrogen capacity achieved by using graphene has reinforced this opinion and motivated investigations of the possibility to use it to store another important energy carrier - lithium (Li). While the first-principles computations show that the Li capacity of pristine graphene, limited by Li clustering and phase separation, is lower than that offered by Li intercalation in graphite, we explore the feasibility of modifying graphene for better Li storage. It is found that certain structural defects in graphene can bind Li stably, yet a more efficacious approach is through substitution doping with boron (B). In particular, the layered C3B compound stands out as a promising Li storage medium. The monolayer C3B has a capacity of 714 mAh/g (as Li1.25C3B), and the capacity of stacked C3B is 857 mAh/g (as Li1.5C3B), which is about twice as large as graphite's 372 mAh/g (as LiC6). Our results help clarify the mechanism of Li storage in low-dimensional materials, and shed light on the rational design of nanoarchitectures for energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA