RESUMO
Objective: Macrophage inflammatory protein 1-alpha (CCL3) is a chemokine that regulates macrophage trafficking to the inflamed joint. The agonistic effect of CCL3 on osteolytic lesions in patients with multiple myeloma is recognized; however, its role in skeletal damage during inflammatory arthritis has not been established. The aim of the study was to explore the role of osteoclast-associated CCL3 upon bone resorption, and to test its pharmacological blockade for protecting against bone pathology during inflammatory arthritis. Methods: CCL3 production was studied during osteoclast differentiation from osteoclast precursor cells: human CD14-positive mononuclear cells. Mice with CIA were treated with an anti-CCL3 antibody. The effect of CCL3 blockade through mAb was studied through osteoclast number, cytokine production and bone resorption on ivory disks, and in vivo through CIA progression (clinical score, paw diameter, synovial inflammation and bone damage). Results: Over time, CCL3 increased in parallel with the number of osteoclasts in culture. Anti-CCL3 treatment achieved a concentration-dependent inhibition of osteoclast fusion and reduced pit formation on ivory disks (P ⩽ 0.05). In CIA, anti-CCL3 treatment reduced joint damage and significantly decreased multinucleated tartrate-resistant acid phosphatase-positive osteoclasts and erosions in the wrists (P < 0.05) and elbows (P < 0.05), while also reducing joint erosions in the hind (P < 0.01) and fore paws (P < 0.01) as confirmed by X-ray. Conclusion: Inhibition of osteoclast-associated CCL3 reduced osteoclast formation and function whilst attenuating arthritis-associated bone loss and controlling development of erosion in murine joints, thus uncoupling bone damage from inflammation. Our findings may help future innovations for the diagnosis and treatment of inflammatory arthritis.
Assuntos
Artrite Experimental/metabolismo , Reabsorção Óssea/metabolismo , Quimiocina CCL3/metabolismo , Osteoclastos/metabolismo , Animais , Células Cultivadas , Humanos , CamundongosRESUMO
Introduction: Although rheumatoid arthritis (RA) is a disease of articular joints, patients often suffer from co-morbid neuropsychiatric changes, such as anxiety, that may reflect links between heightened systemic inflammation and abnormal regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Here, we apply behavioral neuroscience methods to assess the impact of antigen-induced arthritis (AIA) on behavioral performance in wild type (WT) and interleukin-10 deficient (Il10-/-) mice. Our aim was to identify limb-specific motor impairments, as well as neuropsychological responses to inflammatory arthritis. Methods: Behavioral testing was performed longitudinally in WT and Il10-/- mice before and after the induction of arthritic joint pathology. Footprint analysis, beam walking and open field assessment determined a range of motor, exploratory and anxiety-related parameters. Specific gene changes in HPA axis tissues were analyzed using qPCR. Results: Behavioral assessment revealed transient motor and exploratory impairments in mice receiving AIA, coinciding with joint swelling. Hind limb coordination deficits were independent of joint pathology. Behavioral impairments returned to baseline by 10 days post-AIA in WT mice. Il10-/- mice demonstrated comparable levels of swelling and joint pathology as WT mice up to 15 days post-AIA, but systemic differences were evident in mRNA expression in HPA axis tissues from Il10-/- mice post-AIA. Interestingly, the behavioral profile of Il10-/- mice revealed a significantly longer time post-AIA for activity and anxiety-related behaviors to recover. Conclusions: The novel application of sensitive behavioral tasks has enabled dissociation between behaviors that occur due to transient joint-specific pathology and those generated by more subtle systemic alterations that manifest post-AIA.
RESUMO
OBJECTIVES: Synovial fluid glutamate concentrations increase in arthritis. Activation of kainate (KA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors (GluRs) increase interleukin-6 (IL-6) release and cause arthritic pain, respectively. We hypothesised that AMPA and KA GluRs are expressed in human arthritis, and that intra-articular NBQX (AMPA/KA GluR antagonist) prevents pain and pathology in antigen-induced arthritis (AIA). METHODS: GluR immunohistochemistry was related to synovial inflammation and degradation in osteoarthritis (OA) and rheumatoid arthritis (RA). A single intra-articular NBQX injection was given at induction, and knee swelling and gait of AIA and AIA+NBQX rats compared over 21â days, before imaging, RT-qPCR, histology and immunohistochemistry of joints. Effects of NBQX on human primary osteoblast (HOB) activity were determined. RESULTS: AMPAR2 and KA1 immunolocalised to remodelling bone, cartilage and synovial cells in human OA and RA, and rat AIA. All arthritic tissues showed degradation and synovial inflammation. NBQX reduced GluR abundance, knee swelling (p<0.001, days 1-21), gait abnormalities (days 1-2), end-stage joint destruction (p<0.001), synovial inflammation (p<0.001), and messenger RNA expression of meniscal IL-6 (p<0.05) and whole joint cathepsin K (p<0.01). X-ray and MRI revealed fewer cartilage and bone erosions, and less inflammation after NBQX treatment. NBQX reduced HOB number and prevented mineralisation. CONCLUSIONS: AMPA/KA GluRs are expressed in human OA and RA, and in AIA, where a single intra-articular injection of NBQX reduced swelling by 33%, and inflammation and degeneration scores by 34% and 27%, respectively, exceeding the efficacy of approved drugs in the same model. AMPA/KA GluR antagonists represent a potential treatment for arthritis.
Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Dor/metabolismo , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Membrana Sinovial/metabolismo , Animais , Artrite Experimental/diagnóstico por imagem , Artrite Reumatoide/imunologia , Comportamento Animal/efeitos dos fármacos , Cartilagem Articular/diagnóstico por imagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Interleucina-6/metabolismo , Articulação do Joelho/diagnóstico por imagem , Masculino , Meniscos Tibiais/metabolismo , Osteoartrite/imunologia , Osteoblastos , Dor/imunologia , Quinoxalinas/farmacologia , Radiografia , Ratos , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/imunologia , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores de Ácido Caínico/imunologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/imunologiaRESUMO
INTRODUCTION: Activation of the inflammasome has been implicated in the pathology of various autoinflammatory and autoimmune diseases. While the NLRP3 inflammasome has been linked to arthritis progression, little is known about its synovial regulation or contribution to joint histopathology. Regulators of inflammation activation, such as interleukin (IL)-10, may have the potential to limit the inflammasome-driven arthritic disease course and associated structural damage. Hence, we used IL-10-deficient (IL-10KO) mice to assess NLRP3 inflammasome-driven arthritic pathology. METHODS: Antigen-induced arthritis (AIA) was established in IL-10KO mice and wild-type controls. Using histological and radiographic approaches together with quantitative real-time PCR of synovial mRNA studies, we explored the regulation of inflammasome components. These were combined with selective blocking agents and ex vivo investigative studies in osteoclast differentiation assays. RESULTS: In AIA, IL-10KO mice display severe disease with increased histological and radiographic joint scores. Here, focal bone erosions were associated with increased tartrate-resistant acid phosphatase (TRAP)-positive cells and a localized expression of IL-1ß. When compared to controls, IL-10KO synovium showed increased expression of Il1b, Il33 and NLRP3 inflammasome components. Synovial Nlrp3 and Casp1 expression further correlated with Acp5 (encoding TRAP), while neutralization of IL-10 receptor signaling in control mice caused increased expression of Nlrp3 and Casp1. In ex vivo osteoclast differentiation assays, addition of exogenous IL-10 or selective blockade of the NLRP3 inflammasome inhibited osteoclastogenesis. CONCLUSIONS: These data provide a link between IL-10, synovial regulation of the NLRP3 inflammasome and the degree of bone erosions observed in inflammatory arthritis.
Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Inflamassomos/imunologia , Interleucina-10/imunologia , Animais , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Proteínas de Transporte/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Osteoclastos/citologia , Osteoclastos/metabolismo , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Arthritis is a heterogeneous disease characterized by joint stiffness, swelling, and pain. Although primarily considered a peripheral joint disease, the severity of pain reported by arthritis patients does not always reflect the extent of joint pathology detectable by conventional means. Using structural and functional brain imaging techniques, a growing number of evolving neuroimaging methods are providing insight into these observed discrepancies at different time-scales. Of these methods, functional magnetic resonance imaging is exploited for short-term evoked pain examination and treatment evaluation; 'resting-state' approaches provide insight into fluctuations in pain; perfusion imaging captures elements of on-going clinical pain; and morphological brain assessment provides evidence for long-term structural changes in the brain associated with chronic pain. Further insight into arthritic pain processing at the brain-systems level could in the future be provided by combined neuroimaging approaches, specifically investigating the interactions between functional and structural alterations.
Assuntos
Artrite/patologia , Neuroimagem/métodos , Dor/patologia , Artrite/complicações , Artrite/diagnóstico por imagem , Encéfalo/patologia , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Dor/diagnóstico por imagem , Dor/etiologia , Tomografia por Emissão de Pósitrons , Resultado do TratamentoRESUMO
There is a growing demand for non-invasive methods to diagnose tendon injuries and monitor the healing processes of their repair. To date there is limited knowledge on their structure and function and the interlink between these. One of the potential targets in this investigation is the extracellular matrix (ECM) that captures its structural changes. Recently we reported on the assessment tendon damage on a macroscopic level from high field MR signals. In this paper, we present a methodology that enables structural description on a microscopic level. We derived curvature values from the conformal monogenic signal, which however can become unreliable in the presence of noise. To account for this we use non parametric noise properties and a 1D feature based uncertainty measure in an iterative framework using Hidden Markov Measure Field (HMMF). The proposed method reveals that curvature values derived from normal tendon tissue microscopy images are higher and more homogenous than curvature values derived from the damaged tendon images.
Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tendões/patologia , Humanos , IncertezaRESUMO
This study combined functional and structural magnetic resonance imaging techniques, optimized for the human brainstem, to investigate activity in brainstem respiratory control centres in a group of 12 healthy human volunteers. We stimulated respiration with carbon dioxide (CO(2)), and utilized novel methodology to separate its vascular from its neuronal effects upon the blood oxygen level dependent (BOLD) signal. In the brainstem we observed activity in the dorsal rostral pons (representing the Kölliker-Fuse/parabrachial (KF/PB) nuclei and locus coeruleus), the inferior ventral pons and the dorsal and lateral medulla. These areas of activation correspond to respiratory nuclei identified in recent rodent studies. Our results also reveal functional participation of the anteroventral (AV), ventral posterolateral (VPL) ventrolateral thalamic nuclei, and the posterior putamen in the response to CO(2) stimulation, suggesting that these centres may play a role in gating respiratory information to the cortex. As the functional imaging plane was limited to the brainstem and adjacent subcortical areas, we employed diffusion tractography to further investigate cortical connectivity of the thalamic activations. This revealed distinct connectivity profiles of these thalamic activations suggesting subdivision of the thalamus with regards to respiratory control. From these results we speculate that the thalamus plays an important role in integrating respiratory signals to and from the brainstem respiratory centres.
Assuntos
Tronco Encefálico/anatomia & histologia , Tronco Encefálico/fisiologia , Dióxido de Carbono/metabolismo , Imageamento por Ressonância Magnética/métodos , Consumo de Oxigênio/fisiologia , Mecânica Respiratória/fisiologia , Tálamo/anatomia & histologia , Tálamo/fisiologia , Adulto , Retroalimentação/fisiologia , Feminino , Humanos , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologiaRESUMO
PURPOSE: To estimate the importance of respiratory and cardiac effects on signal variability found in functional magnetic resonance imaging data recorded from the brainstem. MATERIALS AND METHODS: A modified version of the retrospective image correction (RETROICOR) method (Glover et al, [2000] Magn Reson Med 44:162-167) was implemented on resting brainstem echo-planar imaging (EPI) data in 12 subjects. Fourier series were fitted to image data based on cardiac and respiratory recordings (pulseoximetry and respiratory turbine), including multiplicative terms that accounted for interactions between cardiac and respiratory signals. F-tests were performed on residuals produced by regression analysis. Additionally, we evaluated whether modified RETROICOR improved detection of brainstem activation (in 11 subjects) during a finger opposition task. RESULTS: The optimal model, containing three cardiac (C) and four respiratory (R) harmonics, and one multiplicative (X) term, "3C4R1X," significantly reduced signal variability without overfitting to noise. The application of modified RETROICOR to activation data increased group Z-statistics and reduced putative false-positive activation. CONCLUSION: In addition to cardiac and respiratory effects, their interaction was also a significant source of physiological noise. The modified RETROICOR model improved detection of brainstem activation and would be usefully applied to any study examining this brain region.