Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Alzheimers Dement ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258539

RESUMO

The magnetic resonance imaging (MRI) Core has been operating since Alzheimer's Disease Neuroimaging Initiative's (ADNI) inception, providing 20 years of data including reliable, multi-platform standardized protocols, carefully curated image data, and quantitative measures provided by expert investigators. The overarching purposes of the MRI Core include: (1) optimizing and standardizing MRI acquisition methods, which have been adopted by many multicenter studies and trials worldwide and (2) providing curated images and numeric summary values from relevant MRI sequences/contrasts to the scientific community. Over time, ADNI MRI has become increasingly complex. To remain technically current, the ADNI MRI protocol has changed substantially over the past two decades. The ADNI 4 protocol contains nine different imaging types (e.g., three dimensional [3D] T1-weighted and fluid-attenuated inversion recovery [FLAIR]). Our view is that the ADNI MRI data are a greatly underutilized resource. The purpose of this paper is to educate the scientific community on ADNI MRI methods and content to promote greater awareness, accessibility, and use. HIGHLIGHTS: The MRI Core provides multi-platform standardized protocols, carefully curated image data, and quantitative analysis by expert groups. The ADNI MRI protocol has undergone major changes over the past two decades to remain technically current. As of April 25, 2024, the following numbers of image series are available: 17,141 3D T1w; 6877 FLAIR; 3140 T2/PD; 6623 GRE; 3237 dMRI; 2846 ASL; 2968 TF-fMRI; and 2861 HighResHippo (see Table 1 for abbreviations). As of April 25, 2024, the following numbers of quantitative analyses are available: FreeSurfer 10,997; BSI 6120; tensor based morphometry (TBM) and TBM-SYN 12,019; WMH 9944; dMRI 1913; ASL 925; TF-fMRI NFQ 2992; and medial temporal subregion volumes 2726 (see Table 4 for abbreviations). ADNI MRI is an underutilized resource that could be more useful to the research community.

2.
Acta Neuropathol Commun ; 12(1): 134, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154006

RESUMO

Accurate and scalable quantification of amyloid-ß (Aß) pathology is crucial for deeper disease phenotyping and furthering research in Alzheimer Disease (AD). This multidisciplinary study addresses the current limitations on neuropathology by leveraging a machine learning (ML) pipeline to perform a granular quantification of Aß deposits and assess their distribution in the temporal lobe. Utilizing 131 whole-slide-images from consecutive autopsied cases at the University of California Davis Alzheimer Disease Research Center, our objectives were threefold: (1) Validate an automatic workflow for Aß deposit quantification in white matter (WM) and gray matter (GM); (2) define the distributions of different Aß deposit types in GM and WM, and (3) investigate correlates of Aß deposits with dementia status and the presence of mixed pathology. Our methodology highlights the robustness and efficacy of the ML pipeline, demonstrating proficiency akin to experts' evaluations. We provide comprehensive insights into the quantification and distribution of Aß deposits in the temporal GM and WM revealing a progressive increase in tandem with the severity of established diagnostic criteria (NIA-AA). We also present correlations of Aß load with clinical diagnosis as well as presence/absence of mixed pathology. This study introduces a reproducible workflow, showcasing the practical use of ML approaches in the field of neuropathology, and use of the output data for correlative analyses. Acknowledging limitations, such as potential biases in the ML model and current ML classifications, we propose avenues for future research to refine and expand the methodology. We hope to contribute to the broader landscape of neuropathology advancements, ML applications, and precision medicine, paving the way for deep phenotyping of AD brain cases and establishing a foundation for further advancements in neuropathological research.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Aprendizado de Máquina , Lobo Temporal , Humanos , Lobo Temporal/patologia , Lobo Temporal/metabolismo , Peptídeos beta-Amiloides/metabolismo , Feminino , Masculino , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Bancos de Tecidos , Substância Cinzenta/patologia , Substância Cinzenta/metabolismo , Substância Branca/patologia , Substância Branca/metabolismo , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Pessoa de Meia-Idade
3.
Alzheimers Dement ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138886

RESUMO

INTRODUCTION: Well-chosen biomarkers have the potential to increase the efficiency of clinical trials and drug discovery and should show good precision as well as clinical validity. METHODS: We suggest measures that operationalize these criteria and describe a general approach that can be used for inference-based comparisons of biomarker performance. The methods are applied to measures obtained from structural magnetic resonance imaging (MRI) from individuals with mild dementia (n = 70) or mild cognitive impairment (MCI; n = 303) enrolled in the Alzheimer's Disease Neuroimaging Initiative. RESULTS: Ventricular volume and hippocampal volume showed the best precision in detecting change over time in both individuals with MCI and with dementia. Differences in clinical validity varied by group. DISCUSSION: The methodology presented provides a standardized framework for comparison of biomarkers across modalities and across different methods used to generate similar measures and will help in the search for the most promising biomarkers. HIGHLIGHTS: A framework for comparison of biomarkers on pre-defined criteria is presented. Criteria for comparison include precision in capturing change and clinical validity. Ventricular volume has high precision in change for both dementia and mild cognitive impairment (MCI) trials. Imaging measures' performance in clinical validity varies more for dementia than for MCI.

4.
Alzheimers Dement ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140601

RESUMO

The goal of the Biostatistics Core of the Alzheimer's Disease Neuroimaging Initiative (ADNI) has been to ensure that sound study designs and statistical methods are used to meet the overall goals of ADNI. We have supported the creation of a well-validated and well-curated longitudinal database of clinical and biomarker information on ADNI participants and helped to make this accessible and usable for researchers. We have developed a statistical methodology for characterizing the trajectories of clinical and biomarker change for ADNI participants across the spectrum from cognitively normal to dementia, including multivariate patterns and evidence for heterogeneity in cognitive aging. We have applied these methods and adapted them to improve clinical trial design. ADNI-4 will offer us a chance to help extend these efforts to a more diverse cohort with an even richer panel of biomarker data to support better knowledge of and treatment for Alzheimer's disease and related dementias. HIGHLIGHTS: The Alzheimer's Disease Neuroimaging Initiative (ADNI) Biostatistics Core provides study design and analytic support to ADNI investigators. Core members develop and apply novel statistical methodology to work with ADNI data and support clinical trial design. The Core contributes to the standardization, validation, and harmonization of biomarker data. The Core serves as a resource to the wider research community to address questions related to the data and study as a whole.

5.
Front Neurol ; 15: 1408220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882697

RESUMO

Introduction: The role of lipopolysaccharide binding protein (LBP), an inflammation marker of bacterial translocation from the gastrointestinal tract, in Alzheimer's disease (AD) is not clearly understood. Methods: In this study the concentrations of LBP were measured in n = 79 individuals: 20 apolipoprotein E (APOE)3/E3 carriers with and 20 without AD dementia, and 19 APOE3/E4 carriers with and 20 without AD dementia. LBP was found to be enriched in the 1.21-1.25 g/mL density fraction of plasma, which has previously been shown to be enriched in intestinally derived high-density lipoproteins (HDL). LBP concentrations were measured by ELISA. Results: LBP was significantly increased within the 1.21-1.25 g/mL density fraction of plasma in APOE3/E3 AD patients compared to controls, but not APOE3/E4 patients. LBP was positively correlated with Clinical Dementia Rating (CDR) and exhibited an inverse relationship with Verbal Memory Score (VMS). Discussion: These results underscore the potential contribution of gut permeability to bacterial toxins, measured as LBP, as an inflammatory mediator in the development of AD, particularly in individuals with the APOE3/E3 genotype, who are genetically at 4-12-fold lower risk of AD than individuals who express APOE4.

6.
Mol Psychiatry ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755243

RESUMO

Previous studies have reported alterations in cortical thickness in autism. However, few have included enough autistic females to determine if there are sex specific differences in cortical structure in autism. This longitudinal study aimed to investigate autistic sex differences in cortical thickness and trajectory of cortical thinning across childhood. Participants included 290 autistic (88 females) and 139 nonautistic (60 females) individuals assessed at up to 4 timepoints spanning ~2-13 years of age (918 total MRI timepoints). Estimates of cortical thickness in early and late childhood as well as the trajectory of cortical thinning were modeled using spatiotemporal linear mixed effects models of age-by-sex-by-diagnosis. Additionally, the spatial correspondence between cortical maps of sex-by-diagnosis differences and neurotypical sex differences were evaluated. Relative to their nonautistic peers, autistic females had more extensive cortical differences than autistic males. These differences involved multiple functional networks, and were mainly characterized by thicker cortex at ~3 years of age and faster cortical thinning in autistic females. Cortical regions in which autistic alterations were different between the sexes significantly overlapped with regions that differed by sex in neurotypical development. Autistic females and males demonstrated some shared differences in cortical thickness and rate of cortical thinning across childhood relative to their nonautistic peers, however these areas were relatively small compared to the widespread differences observed across the sexes. These results support evidence of sex-specific neurobiology in autism and suggest that processes that regulate sex differentiation in the neurotypical brain contribute to sex differences in the etiology of autism.

7.
Front Toxicol ; 6: 1360359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745692

RESUMO

Acute intoxication with high levels of organophosphate (OP) cholinesterase inhibitors can cause cholinergic crisis, which is associated with acute, life-threatening parasympathomimetic symptoms, respiratory depression and seizures that can rapidly progress to status epilepticus (SE). Clinical and experimental data demonstrate that individuals who survive these acute neurotoxic effects often develop significant chronic morbidity, including behavioral deficits. The pathogenic mechanism(s) that link acute OP intoxication to chronic neurological deficits remain speculative. Cellular senescence has been linked to behavioral deficits associated with aging and neurodegenerative disease, but whether acute OP intoxication triggers cellular senescence in the brain has not been investigated. Here, we test this hypothesis in a rat model of acute intoxication with the OP diisopropylfluorophosphate (DFP). Adult male Sprague-Dawley rats were administered DFP (4 mg/kg, s.c.). Control animals were administered an equal volume (300 µL) of sterile phosphate-buffered saline (s.c.). Both groups were subsequently injected with atropine sulfate (2 mg/kg, i.m.) and 2-pralidoxime (25 mg/kg, i.m.). DFP triggered seizure activity within minutes that rapidly progressed to SE, as determined using behavioral seizure criteria. Brains were collected from animals at 1, 3, and 6 months post-exposure for immunohistochemical analyses of p16, a biomarker of cellular senescence. While there was no immunohistochemical evidence of cellular senescence at 1-month post-exposure, at 3- and 6-months post-exposure, p16 immunoreactivity was significantly increased in the CA3 and dentate gyrus of the hippocampus, amygdala, piriform cortex and thalamus, but not the CA1 region of the hippocampus or the somatosensory cortex. Co-localization of p16 immunoreactivity with cell-specific biomarkers, specifically, NeuN, GFAP, S100ß, IBA1 and CD31, revealed that p16 expression in the brain of DFP animals is neuron-specific. The spatial distribution of p16-immunopositive cells overlapped with expression of senescence associated ß-galactosidase and with degenerating neurons identified by FluoroJade-C (FJC) staining. The co-occurrence of p16 and FJC was positively correlated. This study implicates cellular senescence as a novel pathogenic mechanism underlying the chronic neurological deficits observed in individuals who survive OP-induced cholinergic crisis.

8.
Antioxidants (Basel) ; 13(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38790721

RESUMO

High-density lipoproteins (HDLs) are key regulators of cellular cholesterol homeostasis but are functionally altered in many chronic diseases. The factors that cause HDL functional loss in chronic disease are not fully understood. It is also unknown what roles antioxidant carotenoids play in protecting HDL against functional loss. The aim of this study was to measure how various disease-associated chemical factors including exposure to (1) Cu2+ ions, (2) hypochlorous acid (HOCL), (3) hydrogen peroxide (H2O2), (4) sialidase, (5) glycosidase, (6) high glucose, (7) high fructose, and (8) acidic pH, and the carotenoid antioxidants (9) lutein and (10) zeaxanthin affect HDL functionality. We hypothesized that some of the modifications would have stronger impacts on HDL particle structure and function than others and that lutein and zeaxanthin would improve HDL function. HDL samples were isolated from generally healthy human plasma and incubated with the corresponding treatments listed above. Cholesterol efflux capacity (CEC), lecithin-cholesterol acyl transferase (LCAT) activity, and paraoxonase-1 (PON1) activity were measured in order to determine changes in HDL functionality. Median HDL particle diameter was increased by acidic pH treatment and reduced by HOCl, high glucose, high fructose, N-glycosidase, and lutein treatments. Acidic pH, oxidation, and fructosylation all reduced HDL CEC, whereas lutein, zeaxanthin, and sialidase treatment improved HDL CEC. LCAT activity was reduced by acidic pH, oxidation, high fructose treatments, and lutein. PON1 activity was reduced by sialidase, glycosidase, H2O2, and fructose and improved by zeaxanthin and lutein treatment. These results show that exposure to oxidizing agents, high fructose, and low pH directly impairs HDL functionality related to cholesterol efflux and particle maturation, whereas deglycosylation impairs HDL antioxidant capacity. On the other hand, the antioxidants lutein and zeaxanthin improve or preserve both HDL cholesterol efflux and antioxidant activity but have no effect on particle maturation.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38658455

RESUMO

This study aimed to compare the breastfeeding (BF) duration of the younger siblings of children with ASD in an enriched-likelihood cohort for autism spectrum disorder (ASD), and to determine whether longer BF duration was associated with differences in neurodevelopmental outcomes in this cohort. Information on BF practices was collected via surveys in the MARBLES (Markers of Autism Risk in Babies-Learning Early Signs) study. Developmental evaluations, including the Mullen Scales of Early Learning and the Autism Diagnostic Observation Schedule, were conducted by expert clinicians. Participants' neurodevelopmental outcome was classified by an algorithm into three groups: typical development, ASD, and non-typical development. The median duration of BF was 10.70 months (interquartile range of 12.07 months). There were no significant differences in the distribution of duration of BF among the three neurodevelopmental outcome categories. Children in this enriched-likelihood cohort who were breastfed for > 12 months had significantly higher scores on cognitive testing compared to those who were breastfed for 0-3 months. There was no significant difference in ASD symptomatology or ASD risk based on BF duration.

10.
Toxics ; 12(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38668486

RESUMO

Acute intoxication with organophosphorus (OP) cholinesterase inhibitors can produce seizures that rapidly progress to life-threatening status epilepticus. Significant research effort has been focused on investigating the involvement of muscarinic acetylcholine receptors (mAChRs) in OP-induced seizure activity. In contrast, there has been far less attention on nicotinic AChRs (nAChRs) in this context. Here, we address this data gap using a combination of in vitro and in vivo models. Pharmacological antagonism and genetic deletion of α4, but not α7, nAChR subunits prevented or significantly attenuated OP-induced electrical spike activity in acute hippocampal slices and seizure activity in mice, indicating that α4 nAChR activation is necessary for neuronal hyperexcitability triggered by acute OP exposures. These findings not only suggest that therapeutic strategies for inhibiting the α4 nAChR subunit warrant further investigation as prophylactic and immediate treatments for acute OP-induced seizures, but also provide mechanistic insight into the role of the nicotinic cholinergic system in seizure generation.

11.
EJNMMI Res ; 14(1): 39, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625413

RESUMO

BACKGROUND: Kinetic modeling of 18F-florbetaben provides important quantification of brain amyloid deposition in research and clinical settings but its use is limited by the requirement of arterial blood data for quantitative PET. The total-body EXPLORER PET scanner supports the dynamic acquisition of a full human body simultaneously and permits noninvasive image-derived input functions (IDIFs) as an alternative to arterial blood sampling. This study quantified brain amyloid burden with kinetic modeling, leveraging dynamic 18F-florbetaben PET in aorta IDIFs and the brain in an elderly cohort. METHODS: 18F-florbetaben dynamic PET imaging was performed on the EXPLORER system with tracer injection (300 MBq) in 3 individuals with Alzheimer's disease (AD), 3 with mild cognitive impairment, and 9 healthy controls. Image-derived input functions were extracted from the descending aorta with manual regions of interest based on the first 30 s after injection. Dynamic time-activity curves (TACs) for 110 min were fitted to the two-tissue compartment model (2TCM) using population-based metabolite corrected IDIFs to calculate total and specific distribution volumes (VT, Vs) in key brain regions with early amyloid accumulation. Non-displaceable binding potential ([Formula: see text] was also calculated from the multi-reference tissue model (MRTM). RESULTS: Amyloid-positive (AD) patients showed the highest VT and VS in anterior cingulate, posterior cingulate, and precuneus, consistent with [Formula: see text] analysis. [Formula: see text]and VT from kinetic models were correlated (r² = 0.46, P < 2[Formula: see text] with a stronger positive correlation observed in amyloid-positive participants, indicating reliable model fits with the IDIFs. VT from 2TCM was highly correlated ([Formula: see text]= 0.65, P < 2[Formula: see text]) with Logan graphical VT estimation. CONCLUSION: Non-invasive quantification of amyloid binding from total-body 18F-florbetaben PET data is feasible using aorta IDIFs with high agreement between kinetic distribution volume parameters compared to [Formula: see text]in amyloid-positive and amyloid-negative older individuals.

12.
Neuropharmacology ; 249: 109895, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437913

RESUMO

Acute intoxication with organophosphate (OP) cholinesterase inhibitors poses a significant public health risk. While currently approved medical countermeasures can improve survival rates, they often fail to prevent chronic neurological damage. Therefore, there is need to develop effective therapies and quantitative metrics for assessing OP-induced brain injury and its rescue by these therapies. In this study we used a rat model of acute intoxication with the OP, diisopropylfluorophosphate (DFP), to test the hypothesis that T2 measures obtained from brain magnetic resonance imaging (MRI) scans provide quantitative metrics of brain injury and therapeutic efficacy. Adult male Sprague Dawley rats were imaged on a 7T MRI scanner at 3, 7 and 28 days post-exposure to DFP or vehicle (VEH) with or without treatment with the standard of care antiseizure drug, midazolam (MDZ); a novel antiseizure medication, allopregnanolone (ALLO); or combination therapy with MDZ and ALLO (DUO). Our results show that mean T2 values in DFP-exposed animals were: (1) higher than VEH in all volumes of interest (VOIs) at day 3; (2) decreased with time; and (3) decreased in the thalamus at day 28. Treatment with ALLO or DUO, but not MDZ alone, significantly decreased mean T2 values relative to untreated DFP animals in the piriform cortex at day 3. On day 28, the DUO group showed the most favorable T2 characteristics. This study supports the utility of T2 mapping for longitudinally monitoring brain injury and highlights the therapeutic potential of ALLO as an adjunct therapy to mitigate chronic morbidity associated with acute OP intoxication.


Assuntos
Lesões Encefálicas , Intoxicação por Organofosfatos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Isoflurofato/toxicidade , Organofosfatos , Inibidores da Colinesterase/farmacologia , Intoxicação por Organofosfatos/tratamento farmacológico , Intoxicação por Organofosfatos/patologia , Lesões Encefálicas/induzido quimicamente , Encéfalo , Midazolam/farmacologia
13.
Neuropharmacology ; 251: 109918, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527652

RESUMO

Acute poisoning with organophosphorus cholinesterase inhibitors (OPs), such as OP nerve agents and pesticides, can cause life threatening cholinergic crisis and status epilepticus (SE). Survivors often experience significant morbidity, including brain injury, acquired epilepsy, and cognitive deficits. Current medical countermeasures for acute OP poisoning include a benzodiazepine to mitigate seizures. Diazepam was long the benzodiazepine included in autoinjectors used to treat OP-induced seizures, but it is now being replaced in many guidelines by midazolam, which terminates seizures more quickly, particularly when administered intramuscularly. While a direct correlation between seizure duration and the extent of brain injury has been widely reported, there are limited data comparing the neuroprotective efficacy of diazepam versus midazolam following acute OP intoxication. To address this data gap, we used non-invasive imaging techniques to longitudinally quantify neuropathology in a rat model of acute intoxication with the OP diisopropylfluorophosphate (DFP) with and without post-exposure intervention with diazepam or midazolam. Magnetic resonance imaging (MRI) was used to monitor neuropathology and brain atrophy, while positron emission tomography (PET) with a radiotracer targeting translocator protein (TSPO) was utilized to assess neuroinflammation. Animals were scanned at 3, 7, 28, 65, 91, and 168 days post-DFP and imaging metrics were quantitated for the hippocampus, amygdala, piriform cortex, thalamus, cerebral cortex and lateral ventricles. In the DFP-intoxicated rat, neuroinflammation persisted for the duration of the study coincident with progressive atrophy and ongoing tissue remodeling. Benzodiazepines attenuated neuropathology in a region-dependent manner, but neither benzodiazepine was effective in attenuating long-term neuroinflammation as detected by TSPO PET. Diffusion MRI and TSPO PET metrics were highly correlated with seizure severity, and early MRI and PET metrics were positively correlated with long-term brain atrophy. Collectively, these results suggest that anti-seizure therapy alone is insufficient to prevent long-lasting neuroinflammation and tissue remodeling.


Assuntos
Lesões Encefálicas , Estado Epiléptico , Ratos , Animais , Diazepam/farmacologia , Midazolam/farmacologia , Midazolam/uso terapêutico , Isoflurofato/farmacologia , Organofosfatos , Doenças Neuroinflamatórias , Neuroproteção , Ratos Sprague-Dawley , Encéfalo/metabolismo , Benzodiazepinas/farmacologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Proteínas de Transporte/metabolismo , Imageamento por Ressonância Magnética , Lesões Encefálicas/metabolismo , Atrofia/patologia
14.
Neurobiol Dis ; 187: 106316, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797902

RESUMO

Acute organophosphate (OP) intoxication can trigger seizures that progress to status epilepticus (SE), and survivors often develop chronic morbidities, including spontaneous recurrent seizures (SRS). The pathogenic mechanisms underlying OP-induced SRS are unknown, but increased BBB permeability is hypothesized to be involved. Previous studies reported BBB leakage following OP-induced SE, but key information regarding time and regional distribution of BBB impairment during the epileptogenic period is missing. To address this data gap, we characterized the spatiotemporal progression of BBB impairment during the first week post-exposure in a rat model of diisopropylfluorophosphate-induced SE, using MRI and albumin immunohistochemistry. Increased BBB permeability, which was detected at 6 h and persisted up to 7 d post-exposure, was most severe and persistent in the piriform cortex and amygdala, moderate but persistent in the thalamus, and less severe and transient in the hippocampus and somatosensory cortex. The extent of BBB leakage was positively correlated with behavioral seizure severity, with the strongest association identified in the piriform cortex and amygdala. These findings provide evidence of the duration, magnitude and spatial breakdown of the BBB during the epileptogenic period following OP-induced SE and support BBB regulation as a viable therapeutic target for preventing SRS following acute OP intoxication.


Assuntos
Barreira Hematoencefálica , Estado Epiléptico , Ratos , Animais , Barreira Hematoencefálica/patologia , Ratos Sprague-Dawley , Organofosfatos/efeitos adversos , Organofosfatos/metabolismo , Estado Epiléptico/metabolismo , Convulsões/metabolismo , Encéfalo/metabolismo
15.
J Acad Nutr Diet ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37544374

RESUMO

BACKGROUND: Type 2 diabetes is a major public health concern in the United States and worldwide. The dietary inflammatory index (DII) and the energy-adjusted DII (E-DII) are tools that assess dietary inflammation. Previous evidence suggests that obesity can modify the association between inflammation and disease. OBJECTIVE: The aim of this study was to evaluate the association between the DII/E-DII and incident diabetes in self-identified Hispanic women from the Women's Health Initiative (WHI). The secondary aim was to evaluate whether obesity modifies the association between the DII/E-DII scores and incident diabetes. DESIGN: Participants were from the WHI Observational Study and the Clinical Trial Components (except women from the treatment arm in the Dietary Modification Trial) conducted among postmenopausal women in the United States. DII/E-DII scores were calculated from a self-administered food frequency questionnaire at baseline that included 122 food items, of which 12 are representative of Hispanic eating patterns. PARTICIPANTS/SETTINGS: Participants included 3,849 postmenopausal women who self-identified as Hispanic that were recruited for the WHI from 1993 to 1998 at 40 US clinical centers. MAIN OUTCOME MEASURES: The outcome was incident diabetes. STATISTICAL ANALYSIS PERFORMED: Cox regression models were used to assess the association between DII/E-DII and incident diabetes. Models were adjusted for age at baseline, lifestyle-related risk factors, known type 2 diabetes mellitus (T2DM) risk factors, and neighborhood socioeconomic status. Interaction was tested between the DII/E-DII scores and obesity. RESULTS: The incidence of diabetes was 13.1% after a median follow-up of 13 years. Higher E-DII scores were associated with a higher risk of incident diabetes (hazard ratio [HR], 1.09; 95% confidence interval [CI], 1.04-1.14). There was no interaction between E-DII scores and obesity (P = 0.73). CONCLUSIONS: Pro-inflammatory diets, as measured by higher E-DII scores, were associated with a higher risk of incident diabetes. Future research is needed for understanding how the inflammatory potential of diets can be decreased.

16.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373543

RESUMO

Research has found that genes specific to microglia are among the strongest risk factors for Alzheimer's disease (AD) and that microglia are critically involved in the etiology of AD. Thus, microglia are an important therapeutic target for novel approaches to the treatment of AD. High-throughput in vitro models to screen molecules for their effectiveness in reversing the pathogenic, pro-inflammatory microglia phenotype are needed. In this study, we used a multi-stimulant approach to test the usefulness of the human microglia cell 3 (HMC3) cell line, immortalized from a human fetal brain-derived primary microglia culture, in duplicating critical aspects of the dysfunctional microglia phenotype. HMC3 microglia were treated with cholesterol (Chol), amyloid beta oligomers (AßO), lipopolysaccharide (LPS), and fructose individually and in combination. HMC3 microglia demonstrated changes in morphology consistent with activation when treated with the combination of Chol + AßO + fructose + LPS. Multiple treatments increased the cellular content of Chol and cholesteryl esters (CE), but only the combination treatment of Chol + AßO + fructose + LPS increased mitochondrial Chol content. Microglia treated with combinations containing Chol + AßO had lower apolipoprotein E (ApoE) secretion, with the combination of Chol + AßO + fructose + LPS having the strongest effect. Combination treatment with Chol + AßO + fructose + LPS also induced APOE and TNF-α expression, reduced ATP production, increased reactive oxygen species (ROS) concentration, and reduced phagocytosis events. These findings suggest that HMC3 microglia treated with the combination of Chol + AßO + fructose + LPS may be a useful high-throughput screening model amenable to testing on 96-well plates to test potential therapeutics to improve microglial function in the context of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/farmacologia , Apolipoproteínas E/metabolismo , Linhagem Celular , Colesterol/farmacologia , Frutose/farmacologia , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Sci Rep ; 13(1): 9267, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286643

RESUMO

The lack of psychometrically sound outcome measures has been a barrier to evaluating the efficacy of treatments proposed for core symptoms of intellectual disability (ID). Research on Expressive Language Sampling (ELS) procedures suggest it is a promising approach to measuring treatment efficacy. ELS entails collecting samples of a participant's talk in interactions with an examiner that are naturalistic but sufficiently structured to ensure consistency and limit examiner effects on the language produced. In this study, we extended previous research on ELS by analyzing an existing dataset to determine whether psychometrically adequate composite scores reflecting multiple dimensions of language can be derived from ELS procedures administered to 6- to 23-year-olds with fragile X syndrome (n = 80) or Down syndrome (n = 78). Data came from ELS conversation and narration procedures administered twice in a 4-week test-retest interval. We found that several composites emerged from variables indexing syntax, vocabulary, planning processes, speech articulation, and talkativeness, although there were some differences in the composites for the two syndromes. Evidence of strong test-retest reliability and construct validity of two of three composites were obtained for each syndrome. Situations in which the composite scores would be useful in evaluating treatment efficacy are outlined.


Assuntos
Idioma , Vocabulário , Humanos , Psicometria , Reprodutibilidade dos Testes , Avaliação de Resultados em Cuidados de Saúde
18.
Sci Rep ; 13(1): 7816, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188790

RESUMO

Glycosylation has been found to be altered in the brains of individuals with Alzheimer's disease (AD). However, it is unknown which specific glycosylation-related pathways are altered in AD dementia. Using publicly available RNA-seq datasets covering seven brain regions and including 1724 samples, we identified glycosylation-related genes ubiquitously changed in individuals with AD. Several differentially expressed glycosyltransferases found by RNA-seq were confirmed by qPCR in a different set of human medial temporal cortex (MTC) samples (n = 20 AD vs. 20 controls). N-glycan-related changes predicted by expression changes in these glycosyltransferases were confirmed by mass spectrometry (MS)-based N-glycan analysis in the MTC (n = 9 AD vs. 6 controls). About 80% of glycosylation-related genes were differentially expressed in at least one brain region of AD participants (adjusted p-values < 0.05). Upregulation of MGAT1 and B4GALT1 involved in complex N-linked glycan formation and galactosylation, respectively, were reflected by increased concentrations of corresponding N-glycans. Isozyme-specific changes were observed in expression of the polypeptide N-acetylgalactosaminyltransferase (GALNT) family and the alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase (ST6GALNAC) family of enzymes. Several glycolipid-specific genes (UGT8, PIGM) were upregulated. The critical transcription factors regulating the expression of N-glycosylation and elongation genes were predicted and found to include STAT1 and HSF5. The miRNA predicted to be involved in regulating N-glycosylation and elongation glycosyltransferases were has-miR-1-3p and has-miR-16-5p, respectively. Our findings provide an overview of glycosylation pathways affected by AD and potential regulators of glycosyltransferase expression that deserve further validation and suggest that glycosylation changes occurring in the brains of AD dementia individuals are highly pathway-specific and unique to AD.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Glicosilação , Transcriptoma , Glicômica , MicroRNAs/genética , MicroRNAs/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Polissacarídeos/metabolismo , Manosiltransferases/genética
19.
Heliyon ; 9(2): e13449, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873154

RESUMO

The field of cell biology has seen major advances in both cellular imaging modalities and the development of automated image analysis platforms that increase rigor, reproducibility, and throughput for large imaging data sets. However, there remains a need for tools that provide accurate morphometric analysis of single cells with complex, dynamic cytoarchitecture in a high-throughput and unbiased manner. We developed a fully automated image-analysis algorithm to rapidly detect and quantify changes in cellular morphology using microglia cells, an innate immune cell within the central nervous system, as representative of cells that exhibit dynamic and complex cytoarchitectural changes. We used two preclinical animal models that exhibit robust changes in microglia morphology: (1) a rat model of acute organophosphate intoxication, which was used to generate fluorescently labeled images for algorithm development; and (2) a rat model of traumatic brain injury, which was used to validate the algorithm using cells labeled using chromogenic detection methods. All ex vivo brain sections were immunolabeled for IBA-1 using fluorescence or diaminobenzidine (DAB) labeling, images were acquired using a high content imaging system and analyzed using a custom-built algorithm. The exploratory data set revealed eight statistically significant and quantitative morphometric parameters that distinguished between phenotypically distinct groups of microglia. Manual validation of single-cell morphology was strongly correlated with the automated analysis and was further supported by a comparison with traditional stereology methods. Existing image analysis pipelines rely on high-resolution images of individual cells, which limits sample size and is subject to selection bias. However, our fully automated method integrates quantification of morphology and fluorescent/chromogenic signals in images from multiple brain regions acquired using high-content imaging. In summary, our free, customizable image analysis tool provides a high-throughput, unbiased method for accurately detecting and quantifying morphological changes in cells with complex morphologies.

20.
Nutr J ; 22(1): 5, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36631866

RESUMO

BACKGROUND: To evaluate the association between the dietary inflammatory index (DII®) and incident cardiovascular disease (CVD) in Hispanic women from the Women's Health Initiative (WHI), and to determine if body mass index (BMI) interacted with the DII scores. METHODS: Secondary analysis of baseline dietary data and long-term CVD outcomes among 3,469 postmenopausal women who self-identified as Hispanic enrolled in WHI. DII scores were calculated from self-administered food frequency questionnaires. The CVD outcomes included coronary heart disease (CHD) and stroke. Stratified Cox regression models were used to assess the relationship between DII scores and CVD in women with and without obesity. Models were adjusted for age, lifestyle risk factors, known risk factors, and neighborhood socioeconomic status. RESULTS: The incidence of CHD was 3.4 and 2.8% for stroke after a median follow-up of 12.9 years. None of the DIIs were associated with CVD risk in this sample of Hispanic women. BMI interacted with the DII (p < 0.20) and stratified models showed that the associations between the DII and CVD were only significant in women with overweight (p < 0.05). In this group, higher DII scores were associated with a higher risk of CHD (HR 1.27; 95% CI: 1.08, 1.51) and a higher risk of stroke (HR 1.32; 95% CI: 1.07, 1.64). CONCLUSION: Among postmenopausal Hispanic women with overweight, greater adherence to pro-inflammatory diets was associated with higher risk of CVD. Additional research is needed to understand how to promote long-term heart-healthy dietary habits to reduce inflammation and prevent CVD in at-risk Hispanic women.


Assuntos
Doenças Cardiovasculares , Doença das Coronárias , Acidente Vascular Cerebral , Feminino , Humanos , Doenças Cardiovasculares/prevenção & controle , Sobrepeso/complicações , Dieta , Saúde da Mulher , Fatores de Risco , Inflamação/epidemiologia , Inflamação/complicações , Doença das Coronárias/epidemiologia , Hispânico ou Latino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA