Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Front Neurosci ; 16: 886342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784849

RESUMO

Alpha-band oscillatory activity over occipito-parietal areas is involved in shaping perceptual and cognitive processes, with a growing body of electroencephalographic (EEG) evidence indicating that pre-stimulus alpha-band amplitude relates to the subjective perceptual experience, but not to objective measures of visual task performance (discrimination accuracy). The primary aim of the present transcranial magnetic stimulation (TMS) study was to investigate whether causality can be established for this relationship, using rhythmic (alpha-band) TMS entrainment protocols. It was anticipated that pre-stimulus 10 Hz-TMS would induce changes in subjective awareness ratings but not accuracy, in the visual hemifield contralateral to TMS. To test this, we administered 10 Hz-TMS over the right intraparietal sulcus prior to visual stimulus presentation in 17 participants, while measuring their objective performance and subjective awareness in a visual discrimination task. Arrhythmic and 10 Hz sham-TMS served as control conditions (within-participant design). Resting EEG was used to record individual alpha frequency (IAF). A study conducted in parallel to ours with a similar design but reported after we completed data collection informed further, secondary analyses for a causal relationship between pre-stimulus alpha-frequency and discrimination accuracy. This was explored through a regression analysis between rhythmic-TMS alpha-pace relative to IAF and performance measures. Our results revealed that contrary to our primary expectation, pre-stimulus 10 Hz-TMS did not affect subjective measures of performance, nor accuracy, relative to control-TMS. This null result is in accord with a recent finding showing that for influencing subjective measures of performance, alpha-TMS needs to be applied post-stimulus. In addition, our secondary analysis showed that IAF was positively correlated with task accuracy across participants, and that 10 Hz-TMS effects on accuracy-but not awareness ratings-depended on IAF: The slower (or faster) the IAF, relative to the fixed 10 Hz TMS frequency, the stronger the TMS-induced performance improvement (or worsening), indicating that 10 Hz-TMS produced a gain (or a loss) in individual performance, directly depending on TMS-pace relative to IAF. In support of recent reports, this is evidence for alpha-frequency playing a causal role in perceptual sensitivity likely through regulating the speed of sensory sampling.

2.
Neuropsychol Rehabil ; 32(5): 629-639, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33467990

RESUMO

It is clear already that in current and future years more people will suffer from stroke, whether related to COVID-19 or not, and given its prevalence, many more people's lives will be affected by neglect. Here we hope to have contributed to its possible amelioration with highlights of the latest thinking on neglect diagnosis, prevalence and treatment.


Assuntos
COVID-19 , Transtornos da Percepção , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Transtornos da Percepção/reabilitação , Acidente Vascular Cerebral/complicações
3.
Eur J Neurosci ; 55(11-12): 3125-3140, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33655566

RESUMO

Pre-stimulus oscillatory neural activity has been linked to the level of awareness of sensory stimuli. More specifically, the power of low-frequency oscillations (primarily in the alpha-band, i.e., 8-14 Hz) prior to stimulus onset is inversely related to measures of subjective performance in visual tasks, such as confidence and visual awareness. Intriguingly, the same EEG signature does not seem to influence objective measures of task performance (i.e., accuracy). We here examined whether this dissociation holds when stringent accuracy measures are used. Previous EEG-studies have employed 2-alternative forced choice (2-AFC) discrimination tasks to link pre-stimulus oscillatory activity to correct/incorrect responses as an index of accuracy/objective performance at the single-trial level. However, 2-AFC tasks do not provide a good estimate of single-trial accuracy, as many of the responses classified as correct will be contaminated by guesses (with the chance correct response rate being 50%). Here instead, we employed a 19-AFC letter identification task to measure accuracy and the subjectively reported level of perceptual awareness on each trial. As the correct guess rate is negligible (~5%), this task provides a purer measure of accuracy. Our results replicate the inverse relationship between pre-stimulus alpha/beta-band power and perceptual awareness ratings in the absence of a link to discrimination accuracy. Pre-stimulus oscillatory phase did not predict either subjective awareness or accuracy. Our results hence confirm a dissociation of the pre-stimulus EEG power-task performance link for subjective versus objective measures of performance, and further substantiate pre-stimulus alpha power as a neural predictor of visual awareness.


Assuntos
Eletroencefalografia , Percepção Visual , Conscientização/fisiologia , Eletroencefalografia/métodos , Estimulação Luminosa/métodos , Análise e Desempenho de Tarefas , Percepção Visual/fisiologia
4.
PLoS One ; 16(8): e0255424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34351972

RESUMO

Transcranial alternating current stimulation (tACS) is a popular technique that has been used for manipulating brain oscillations and inferring causality regarding the brain-behaviour relationship. Although it is a promising tool, the variability of tACS results has raised questions regarding the robustness and reproducibility of its effects. Building on recent research using tACS to modulate visuospatial attention, we here attempted to replicate findings of lateralized parietal tACS at alpha frequency to induce a change in attention bias away from the contra- towards the ipsilateral visual hemifield. 40 healthy participants underwent tACS in two separate sessions where either 10 Hz tACS or sham was applied via a high-density montage over the left parietal cortex at 1.5 mA for 20 min, while performance was assessed in an endogenous attention task. Task and tACS parameters were chosen to match those of previous studies reporting positive effects. Unlike these studies, we did not observe lateralized parietal alpha tACS to affect attention deployment or visual processing across the hemifields as compared to sham. Likewise, additional resting electroencephalography immediately offline to tACS did not reveal any notable effects on individual alpha power or frequency. Our study emphasizes the need for more replication studies and systematic investigations of the factors that drive tACS effects.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Adulto , Ritmo alfa , Eletroencefalografia , Humanos , Masculino , Lobo Parietal , Reprodutibilidade dos Testes , Percepção Visual
5.
Neuropsychol Rehabil ; 31(8): 1163-1189, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32498606

RESUMO

Up to 80% of people who experience a right-hemisphere stroke suffer from hemispatial neglect. This syndrome is debilitating and impedes rehabilitation. We carried out a clinical feasibility trial of transcranial direct current stimulation (tDCS) and a behavioural rehabilitation programme, alone or in combination, in patients with neglect. Patients >4 weeks post right hemisphere stroke were randomized to 10 sessions of tDCS, 10 sessions of a behavioural intervention, combined intervention, or a control task. Primary outcomes were recruitment and retention rates, with secondary outcomes effect sizes on measures of neglect and quality of life, assessed directly after the interventions, and at 6 months follow up. Of 288 confirmed stroke cases referred (representing 7% of confirmed strokes), we randomized 8% (0.6% of stroke cases overall). The largest number of exclusions (91/288 (34%)) were due to medical comorbidities that prevented patients from undergoing 10 intervention sessions. We recruited 24 patients over 29 months, with 87% completing immediate post-intervention and 67% 6 month evaluations. We established poor feasibility of a clinical trial requiring repeated hospital-based tDCS within a UK hospital healthcare setting, either with or without behavioural training, over a sustained time period. Future trials should consider intensity, duration and location of tDCS neglect interventions.Trial registration: ClinicalTrials.gov identifier: NCT02401724.


Assuntos
Transtornos da Percepção , Reabilitação do Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Encéfalo , Método Duplo-Cego , Estudos de Viabilidade , Humanos , Transtornos da Percepção/etiologia , Estudos Prospectivos , Qualidade de Vida
6.
PLoS One ; 14(12): e0226424, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31869372

RESUMO

At present, there is a lack of systematic investigation into intra- and inter-task consistency effects in older adults, when investigating lateralised spatial attention. In young adults, spatial attention typically manifests itself in a processing advantage for the left side of space ("pseudoneglect"), whereas older adults have been reported to display no strongly lateralised bias, or a preference towards the right side. Building on our earlier study in young adults, we investigated older adults, aged between 60 to 86 years, on five commonly used spatial attention tasks (line bisection, landmark, grey and grating scales and lateralised visual detection). Results confirmed a stable test-retest reliability for each of the five spatial tasks across two testing days. However, contrary to our expectations of a consistent lack in bias or a rightward bias, two tasks elicited significant left spatial biases in our sample of older participants, in accordance with pseudoneglect (namely the line bisection and greyscales tasks), while the other three tasks (landmark, grating scales, and lateralised visual detection tasks) showed no significant biases to either side of space. This lack of inter-task correlations replicates recent findings in young adults. Comparing the two age groups revealed that only the landmark task was age sensitive, with a leftward bias in young adults and an eliminated bias in older adults. In view of these findings of no significant inter-task correlations, as well as the inconsistent directions of the observed spatial biases for the older adults across the five tested tasks, we argue that pseudoneglect is a multi-component phenomenon and highly task sensitive. Each task may engage slightly distinct neural mechanisms, likely to be impacted differently by age. This complicates generalisation and comparability of pseudoneglect effects across different tasks, age-groups and hence studies.


Assuntos
Envelhecimento/psicologia , Atenção/fisiologia , Envelhecimento Cognitivo/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Feminino , Lateralidade Funcional , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Estimulação Luminosa , Reprodutibilidade dos Testes
7.
Cortex ; 117: 168-181, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30981955

RESUMO

Neuroimaging and transcranial magnetic stimulation (TMS) studies have implicated a dorsal fronto-parietal network in endogenous attention control and a more ventral set of areas in exogenous attention shifts. However, the extent and circumstances under which these cortical networks overlap and/or interact remain unclear. Crucially, whereas previous studies employed experimental designs that tend to confound exogenous with endogenous attentional engagement, we used a cued target discrimination paradigm that behaviourally dissociates exogenous from endogenous attention processes. Participants engaged with endogenous attention cues, while simultaneous apparent motion cues were driving exogenous attention along the motion path towards or away from the target position. To interfere with dorsal or ventral attention networks, we delivered neuronavigated double-pulse TMS over either right intraparietal sulcus (rIPS) or right temporo-parietal junction (rTPJ) towards the end of the cue target interval, and compared the effects to a sham-TMS condition. For sham-TMS, endogenous and exogenous cueing both benefitted discrimination accuracy. Target discrimination was enhanced at validly versus invalidly cued locations (endogenous cueing benefit) as well as when targets appeared in versus out of the motion path (exogenous cueing benefit), despite motion being uninformative and task-irrelevant, replicating previous findings. Interestingly, both rIPS- and rTPJ-TMS abolished attention benefits from exogenous cueing, while endogenous cueing benefits were unaffected. Our findings provide evidence against independent involvement of the dorsal and ventral attention network nodes in exogenous attention processes.


Assuntos
Antecipação Psicológica/fisiologia , Atenção/fisiologia , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Sinais (Psicologia) , Feminino , Humanos , Masculino , Vias Neurais/fisiologia , Estimulação Luminosa , Tempo de Reação/fisiologia , Estimulação Magnética Transcraniana , Adulto Jovem
8.
Neuropsychol Rehabil ; 29(2): 251-272, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28116988

RESUMO

Hemispatial neglect is a severe cognitive condition frequently observed after a stroke, associated with unawareness of one side of space, disability and poor long-term outcome. Visuomotor feedback training (VFT) is a neglect rehabilitation technique that involves a simple, inexpensive and feasible training of grasping-to-lift rods at the centre. We compared the immediate and long-term effects of VFT vs. a control training when delivered in a home-based setting. Twenty participants were randomly allocated to an intervention (who received VFT) or a control group (n = 10 each). Training was delivered for two sessions by an experimenter and then patients self-administered it for 10 sessions over two weeks. Outcome measures included the Behavioural Inattention Test (BIT), line bisection, Balloons Test, Landmark task, room description task, subjective straight-ahead pointing task and the Stroke Impact Scale. The measures were obtained before, immediately after the training sessions and after four-months post-training. Significantly greater short and long-term improvements were obtained after VFT when compared to control training in line bisection, BIT and spatial bias in cancellation. VFT also produced improvements on activities of daily living. We conclude that VFT is a feasible, effective, home-based rehabilitation method for neglect patients that warrants further investigation with well-designed randomised controlled trials on a large sample of patients.


Assuntos
Atenção/fisiologia , Retroalimentação Sensorial/fisiologia , Transtornos da Percepção/reabilitação , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/complicações , Atividades Cotidianas , Idoso , Idoso de 80 Anos ou mais , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos da Percepção/etiologia , Percepção Espacial/fisiologia , Resultado do Tratamento
9.
PLoS One ; 13(10): e0205269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30278070

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0138379.].

10.
PLoS One ; 13(9): e0203549, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30188952

RESUMO

Young adults demonstrate a small, but consistent, asymmetry of spatial attention favouring the left side of space ("pseudoneglect") in laboratory-based tests of perception. Conversely, in more naturalistic environments, behavioural errors towards the right side of space are often observed. In the older population, spatial attention asymmetries are generally diminished, or even reversed to favour the right side of space, but much of this evidence has been gained from lab-based and/or psychophysical testing. In this study we assessed whether spatial biases can be elicited during a simulated driving task, and secondly whether these biases also shift with age, in line with standard lab-based measures. Data from 77 right-handed adults with full UK driving licences (i.e. prior experience of left-lane driving) were analysed: 38 young (mean age = 21.53) and 39 older adults (mean age = 70.38). Each participant undertook 3 tests of visuospatial attention: the landmark task, line bisection task, and a simulated lane-keeping task. We found leftward biases in young adults for the landmark and line bisection tasks, indicative of pseudoneglect, and a mean lane position towards the right of centre. In young adults the leftward landmark task biases were negatively correlated with rightward lane-keeping biases, hinting that a common property of the spatial attention networks may have influenced both tasks. As predicted, older adults showed no group-level spatial asymmetry on the landmark nor the line bisection task, but they maintained a mean rightward lane position, similar to young adults. The 3 tasks were not inter-correlated in the older group. These results suggest that spatial biases in older adults may be elicited more effectively in experiments involving complex behaviour rather than abstract, lab-based measures. More broadly, these results confirm that lateral biases of spatial attention are linked to driving behaviour, and this could prove informative in the development of future vehicle safety and driving technology.


Assuntos
Condução de Veículo/estatística & dados numéricos , Lateralidade Funcional/fisiologia , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
12.
Cortex ; 98: 84-101, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28532578

RESUMO

An influential model of vision suggests the presence of two visual streams within the brain: a dorsal occipito-parietal stream which mediates action and a ventral occipito-temporal stream which mediates perception. One of the cornerstones of this model is DF, a patient with visual form agnosia following bilateral ventral stream lesions. Despite her inability to identify and distinguish visual stimuli, DF can still use visual information to control her hand actions towards these stimuli. These observations have been widely interpreted as demonstrating a double dissociation from optic ataxia, a condition observed after bilateral dorsal stream damage in which patients are unable to act towards objects that they can recognize. In Experiment 1, we investigated how patient DF performed on the classical diagnostic task for optic ataxia, reaching in central and peripheral vision. We replicated recent findings that DF is remarkably inaccurate when reaching to peripheral targets, but not when reaching in free vision. In addition we present new evidence that her peripheral reaching errors follow the optic ataxia pattern increasing with target eccentricity and being biased towards fixation. In Experiments 2 and 3, for the first time we examined DF's on-line control of reaching using a double-step paradigm in fixation-controlled and free-vision versions of the task. DF was impaired when performing fast on-line corrections on all conditions tested, similarly to optic ataxia patients. Our findings question the long-standing assumption that DF's dorsal visual stream is functionally intact and that her on-line visuomotor control is spared. In contrast, in addition to visual form agnosia, DF also has visuomotor symptoms of optic ataxia which are most likely explained by bilateral damage to the superior parietal-occipital cortex (SPOC). We thus conclude that patient DF can no longer be considered as an appropriate single-case model for testing the neural basis of perception and action dissociations.


Assuntos
Agnosia/fisiopatologia , Ataxia/fisiopatologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Feminino , Humanos , Pessoa de Meia-Idade , Tempo de Reação/fisiologia
13.
Eur J Neurosci ; 48(7): 2566-2584, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28887893

RESUMO

Human perception of perithreshold stimuli critically depends on oscillatory EEG activity prior to stimulus onset. However, it remains unclear exactly which aspects of perception are shaped by this pre-stimulus activity and what role stochastic (trial-by-trial) variability plays in driving these relationships. We employed a novel jackknife approach to link single-trial variability in oscillatory activity to psychometric measures from a task that requires judgement of the relative length of two line segments (the landmark task). The results provide evidence that pre-stimulus alpha fluctuations influence perceptual bias. Importantly, a mediation analysis showed that this relationship is partially driven by long-term (deterministic) alpha changes over time, highlighting the need to account for sources of trial-by-trial variability when interpreting EEG predictors of perception. These results provide fundamental insight into the nature of the effects of ongoing oscillatory activity on perception. The jackknife approach we implemented may serve to identify and investigate neural signatures of perceptual relevance in more detail.


Assuntos
Comportamento/fisiologia , Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Viés , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
14.
Front Neurosci ; 11: 664, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29249932

RESUMO

Several recent studies have reported non-linear effects of transcranial direct current stimulation (tDCS), which has been attributed to an interaction between the stimulation parameters (e.g., current strength, duration) and the neural state of the cortex being stimulated (e.g., indexed by baseline performance ability, age) (see Fertonani and Miniussi, 2016). We have recently described one such non-linear interaction between current strength and baseline performance on a visuospatial attention (landmark) task (Benwell et al., 2015). In this previous study, we induced a small overall rightward shift of spatial attention across 38 participants using bi-hemispheric tDCS applied for 20 min (concurrent left posterior parietal (P5) anode and right posterior parietal (P6) cathode) relative to a sham protocol. Importantly, this shift in bias was driven by a state-dependent interaction between current intensity and the discrimination sensitivity of the participant at baseline (pre-stimulation) for the landmark task. Individuals with high discrimination sensitivity (HDS) shifted rightward in response to low- (1 mA) but not high-intensity (2 mA) tDCS, whereas individuals with low discrimination sensitivity (LDS) shifted rightward with high- but not low-intensity stimulation. However, in Benwell et al. (2015) current strength was applied as a between-groups factor, where half of the participants received 1 mA and half received 2 mA tDCS, thus we were unable to compare high and low-intensity tDCS directly within each individual. Here we aimed to replicate these findings using a within-group design. Thirty young adults received 15 min of 1 and 2 mA tDCS, and a sham protocol, each on different days, to test the concept of an interaction between baseline performance and current strength. We found no overall rightward shift of spatial attention with either current strength, and no interaction between performance and current strength. These results provide further evidence of low replicability of non-invasive brain stimulation protocols, and the need for further attempts to replicate the key experimental findings within this field.

15.
Neuroimage ; 153: 139-151, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28343987

RESUMO

A group-level visuospatial attention bias towards the left side of space (pseudoneglect) is consistently observed in young adults, which is likely to be a consequence of right parieto-occipital dominance for spatial attention. Conversely, healthy older adults demonstrate a rightward shift of this behavioural bias, hinting that an age-related reduction of lateralised neural activity may occur within visuospatial attention networks. We compared young (aged 18-25) and older (aged 60-80) adults on a computerised line bisection (landmark) task whilst recording event-related potentials (ERPs). Full-scalp cluster mass permutation tests identified a larger right parieto-occipital response for long lines compared to short in young adults (confirming Benwell et al., 2014a) which was not present in the older group. To specifically investigate age-related differences in hemispheric lateralisation, cluster mass permutation tests were then performed on a lateralised EEG dataset (RH-LH electrodes). A period of right lateralisation was identified in response to long lines in young adults, which was not present for short lines. No lateralised clusters were present for either long or short lines in older adults. Additionally, a reduced P300 component amplitude was observed for older adults relative to young. We therefore report here, for the first time, an age-related and stimulus-driven reduction of right hemispheric control of spatial attention in older adults. Future studies will need to determine whether this is representative of the normal aging process or an early indicator of neurodegeneration.


Assuntos
Envelhecimento , Atenção/fisiologia , Lateralidade Funcional , Lobo Occipital/fisiologia , Lobo Parietal/fisiologia , Percepção Espacial/fisiologia , Processamento Espacial , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletroencefalografia , Potenciais Evocados P300 , Potenciais Evocados Visuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Acuidade Visual , Percepção Visual/fisiologia , Adulto Jovem
16.
PLoS One ; 10(12): e0144082, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26623650

RESUMO

Many behaviourally relevant sensory events such as motion stimuli and speech have an intrinsic spatio-temporal structure. This will engage intentional and most likely unintentional (automatic) prediction mechanisms enhancing the perception of upcoming stimuli in the event stream. Here we sought to probe the anticipatory processes that are automatically driven by rhythmic input streams in terms of their spatial and temporal components. To this end, we employed an apparent visual motion paradigm testing the effects of pre-target motion on lateralized visual target discrimination. The motion stimuli either moved towards or away from peripheral target positions (valid vs. invalid spatial motion cueing) at a rhythmic or arrhythmic pace (valid vs. invalid temporal motion cueing). Crucially, we emphasized automatic motion-induced anticipatory processes by rendering the motion stimuli non-predictive of upcoming target position (by design) and task-irrelevant (by instruction), and by creating instead endogenous (orthogonal) expectations using symbolic cueing. Our data revealed that the apparent motion cues automatically engaged both spatial and temporal anticipatory processes, but that these processes were dissociated. We further found evidence for lateralisation of anticipatory temporal but not spatial processes. This indicates that distinct mechanisms may drive automatic spatial and temporal extrapolation of upcoming events from rhythmic event streams. This contrasts with previous findings that instead suggest an interaction between spatial and temporal attention processes when endogenously driven. Our results further highlight the need for isolating intentional from unintentional processes for better understanding the various anticipatory mechanisms engaged in processing behaviourally relevant stimuli with predictable spatio-temporal structure such as motion and speech.


Assuntos
Atenção/fisiologia , Orientação/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Adulto , Sinais (Psicologia) , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Movimento (Física) , Estimulação Luminosa/métodos , Percepção Espacial/fisiologia , Adulto Jovem
17.
PLoS One ; 10(9): e0138379, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26378925

RESUMO

Healthy young adults display a leftward asymmetry of spatial attention ("pseudoneglect") that has been measured with a wide range of different tasks. Yet at present there is a lack of systematic evidence that the tasks commonly used in research today are i) stable measures over time and ii) provide similar measures of spatial bias. Fifty right-handed young adults were tested on five tasks (manual line bisection, landmark, greyscales, gratingscales and lateralised visual detection) on two different days. All five tasks were found to be stable measures of bias over the two testing sessions, indicating that each is a reliable measure in itself. Surprisingly, no strongly significant inter-task correlations were found. However, principal component analysis revealed left-right asymmetries to be subdivided in 4 main components, namely asymmetries in size judgements (manual line bisection and landmark), luminance judgements (greyscales), stimulus detection (lateralised visual detection) and judgements of global/local features (manual line bisection and grating scales). The results align with recent research on hemispatial neglect which conceptualises the condition as multi-component rather than a single pathological deficit of spatial attention. We conclude that spatial biases in judgment of visual stimulus features in healthy adults (e.g., pseudoneglect) is also a multi-component phenomenon that may be captured by variations in task demands which engage task-dependent patterns of activation within the attention network.


Assuntos
Atenção/fisiologia , Transtornos da Percepção/fisiopatologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Adolescente , Adulto , Formação de Conceito/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Julgamento/fisiologia , Masculino , Estimulação Luminosa/métodos , Reprodutibilidade dos Testes , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
19.
Cortex ; 69: 152-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26073146

RESUMO

Transcranial direct current stimulation (tDCS) is a well-established technique for non-invasive brain stimulation (NIBS). However, the technique suffers from a high variability in outcome, some of which is likely explained by the state of the brain at tDCS-delivery but for which explanatory, mechanistic models are lacking. Here, we tested the effects of bi-parietal tDCS on perceptual line bisection as a function of tDCS current strength (1 mA vs 2 mA) and individual baseline discrimination sensitivity (a measure associated with intrinsic uncertainty/signal-to-noise balance). Our main findings were threefold. We replicated a previous finding (Giglia et al., 2011) of a rightward shift in subjective midpoint after Left anode/Right cathode tDCS over parietal cortex (sham-controlled). We found this effect to be weak over our entire sample (n = 38), but to be substantial in a subset of participants when they were split according to tDCS-intensity and baseline performance. This was due to a complex, nonlinear interaction between these two factors. Our data lend further support to the notion of state-dependency in NIBS which suggests outcome to depend on the endogenous balance between task-informative 'signal' and task-uninformative 'noise' at baseline. The results highlight the strong influence of individual differences and variations in experimental parameters on tDCS outcome, and the importance of fostering knowledge on the factors influencing tDCS outcome across cognitive domains.


Assuntos
Lateralidade Funcional/fisiologia , Lobo Parietal/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adolescente , Adulto , Atenção/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
20.
Neuropsychologia ; 74: 108-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25637226

RESUMO

Young adults typically display a processing advantage towards the left side of space ("pseudoneglect"), possibly as a result of right parietal dominance for spatial attention. This bias is ameliorated with age, with older adults displaying either no strongly lateralised bias, or a slight bias towards the right. This may represent an age-related reduction of right hemispheric dominance and/or increased left hemispheric involvement. Here, we applied anodal transcranial direct current stimulation (atDCS) to the right posterior parietal cortex (PPC; R-atDCS), the left PPC (L-atDCS) and a Sham protocol in young and older adults during a titrated lateralised visual detection task. We aimed to facilitate visual detection sensitivity in the contralateral visual field with both R-atDCS and L-atDCS relative to Sham. We found no differences in the effects of stimulation between young and older adults. Instead the effects of atDCS were state-dependent (i.e. related to task performance at baseline). Relative to Sham, poor task performers were impaired in both visual fields by anodal stimulation of the left posterior parietal cortex (PPC). Conversely, good performers maintained sensitivity in both visual fields in response to R-atDCS, although this effect was small. We highlight the importance of considering baseline task ability when designing tDCS experiments, particularly in older adults.


Assuntos
Envelhecimento , Atenção/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adolescente , Idoso , Análise de Variância , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Tempo de Reação/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA