Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(11): 3078-3088, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38467015

RESUMO

A biomimetic cell-based carrier system based on monocyte membranes and liposomes has been designed to create a hybrid "Monocyte-LP" which inherits the surface antigens of the monocytes along with the drug encapsulation property of the liposome. Förster resonance energy transfer (FRET) and polarization gated anisotropy measurements show the stiffness of the vesicles obtained from monocyte membranes (Mons), phosphatidylcholine membranes (LP), and Monocyte-LP to follow an increasing order of Mons > Monocyte-LP > LP. The dynamics of interface bound water molecules plays a key role in the elasticity of the vesicles, which in turn imparts higher delivery efficacy to the hybrid Monocyte-LP for a model anticancer drug doxorubicin than the other two vesicles, indicating a critical balance between flexibility and rigidity for an efficient cellular uptake. The present work provides insight on the influence of elasticity of delivery vehicles for enhanced drug delivery.


Assuntos
Antineoplásicos , Lipossomos , Lipossomos/metabolismo , Monócitos/metabolismo , Doxorrubicina , Sistemas de Liberação de Medicamentos
2.
Chembiochem ; 25(5): e202300721, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226959

RESUMO

Glycated hemoglobin (GHb) found in mammals undergoes irreversible damage when exposed to external redox agents, which is much more vulnerable than its normal counterpart hemoglobin (Hb). Besides the oxygen regulation throughout the body, Hb plays a vital role in balancing immunological health and the redox cycle. Photoinduced ultra-fast electron transfer phenomena actively participate in regulation of various kind of homeostasis involved in such biomacromolecules. In the present study we have shown that a well-known mutagen Ethidium Bromide (EtBr) reduces GHb in femtosecond time scale (efficiently) upon photoexcitation after efficient recognition in the biomolecule. We have performed similar experiment by colocalizing EtBr and Iron (Fe(III)) on the micellar surface as Hb mimic in order to study the excited state EtBr dynamics to rationalize the time scale obtained from EtBr in GHb and Hb. While other experimental techniques including Dynamic Light Scattering (DLS), Zeta potential, absorbance and emission spectroscopy have been employed for the confirmation of structural perturbation of GHb compared to Hb, a detailed computational studies involving molecular docking and density functional theory (DFT) have been employed for the explanation of the experimental observations.


Assuntos
Substâncias Redutoras , Oxibato de Sódio , Animais , Hemoglobinas Glicadas , Mutagênicos , Simulação de Acoplamento Molecular , Elétrons , Compostos Férricos , Etídio , Mamíferos
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123671, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000325

RESUMO

Reactive oxygen species (ROS) plays important role to maintain homeostasis in living bodies. Here we have studied interaction of ROS generated from hydrogen peroxide (H2O2) with a well-known spectroscopic probe Rose Bengal (RB) encapsulated in nanoscopic sodium dodecyl sulphate (SDS) micelles in aqueous medium and entrapped in microscopic nylon 66 solid matrix generated using electrospinning technique. A detailed spectroscopic characterization of ROS with SDS encapsulated RB (RB-SDS) shows efficient interaction compared to that in bulk medium. The time resolved analysis on the probe based on femtosecond resolved 2D-spectrum time images collected from streak camera reveal the simultaneous existence of an ultrafast electron (∼6 ps) and a hole transfer mechanism (∼93 ps) resulting from generation of hydroxyl radicals through photobleaching of the probe in presence of H2O2. Based on the spectroscopic and time resolved studies of RB in bulk and in restricted (SDS) medium, we have further translated it for the development of an in-field prototype device which utilizes RB as a ROS sensor impregnated in a nylon thin film. The microscopic nylon solid matrix characterized by scanning electron microscope (SEM) shows porous structure for holding sample containing ROS. Our study quantitatively measures the amount of ROS by using RB embedded microfiber membrane. Thus, our developed prototype device based on RB embedded on the nylon matrix would be beneficial for the potential use in quantification of ROS in extracellular fluids and food materials.

4.
Phys Rev Lett ; 131(19): 196702, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000423

RESUMO

The V-based kagome systems AV_{3}Sb_{5} (A=Cs, Rb, and K) are unique by virtue of the intricate interplay of nontrivial electronic structure, topology, and intriguing fermiology, rendering them to be a playground of many mutually dependent exotic phases like charge-order and superconductivity. Despite numerous recent studies, the interconnection of magnetism and other complex collective phenomena in these systems has yet not arrived at any conclusion. Using first-principles tools, we demonstrate that their electronic structures, complex fermiologies and phonon dispersions are strongly influenced by the interplay of dynamic electron correlations, nontrivial spin-polarization and spin-orbit coupling. An investigation of the first-principles-derived intersite magnetic exchanges with the complementary analysis of q dependence of the electronic response functions and the electron-phonon coupling indicate that the system conforms as a frustrated spin cluster, where the occurrence of the charge-order phase is intimately related to the mechanism of electron-phonon coupling, rather than the Fermi-surface nesting.

5.
Micromachines (Basel) ; 14(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37241604

RESUMO

Following the seminal discovery of Richard Feynman, several micromachines have been made that are capable of several applications, such as solar energy harvesting, remediation of environmental pollution, etc. Here we have synthesized a nanohybrid combining TiO2 nanoparticle and light harvesting robust organic molecule RK1 (2-cyano-3-(4-(7-(5-(4-(diphenylamino)phenyl)-4-octylthiophen-2-yl)benzo[c][1,2,5] thiadiazol-4-yl)phenyl) acrylic acid) as a model micromachine having solar light harvesting ability potential for application in photocatalysis, preparation of solar active devices, etc. Detailed structural characterization, including High Resolution Transmission Electronic Microscopy (HRTEM) and Fourier-transform infrared spectroscopy (FTIR), has been performed on the nanohybrid. We have studied the excited-state ultrafast dynamics of the efficient push-pull dye RK1 in solution, on mesoporous semiconductor nanoparticles, and in insulator nanoparticles by streak camera (resolution of the order of 500 fs). The dynamics of such photosensitizers in polar solvents have been reported, and it has been observed that completely different dynamics occur when they are attached to the surface of the semiconductor/insulator nanosurface. A femtosecond-resolved fast electron transfer has been reported when photosensitizer RK1 has been attached to the surface of the semiconductor nanoparticle, which in turn plays a crucial role in the development of an efficient light harvesting material. The generation of reactive oxygen species as a result of femtosecond-resolved photoinduced electron injection in the aqueous medium is also investigated in order to explore the possibility of redox-active micromachines, which are found to be crucial for efficient and enhanced photocatalysis.

6.
Rev Sci Instrum ; 93(11): 115105, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461487

RESUMO

The deteriorating water environment worldwide, mainly due to population explosion and uncontrolled direct disposal of harmful industrial and farming wastes, earnestly demands new approaches and accurate technologies to monitor water quality before consumption overcoming the shortcomings of the current methodologies. A spectroscopic water quality monitoring and early-warning instrument for evaluating acute water toxicity are the need of the hour. In this study, we have developed a prototype capable of the quantification of dissolved organic matter, dissolved chemicals, and suspended particulate matter in trace amounts dissolved in the water. The prototype estimates the water quality of the samples by measuring the absorbance, fluorescence, and scattering of the impurities simultaneously. The performance of the instrument was evaluated by detecting common water pollutants such as Benzopyrene, Crystal Violet, and Titanium di-oxide. The limit of detection values was found to be 0.50, 23.9, and 23.2 ppb (0.29 µM), respectively.


Assuntos
Benzo(a)pireno , Benzopirenos , Análise Espectral , Matéria Orgânica Dissolvida , Violeta Genciana
7.
RSC Adv ; 12(32): 20728-20734, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35919133

RESUMO

In the past few years, metal sulfide nanoparticles (NPs) have achieved enormous interest due to their photo and electrochemical properties, which can compete with the existing metal oxide NPs. However, there are fewer reports on the synthesis and the mechanism of surface functionalization of these NPs to achieve intrinsic optical properties. Here, we demonstrate a novel method for the synthesis and the surface modification of manganese sulfide (MnS) NPs to achieve intrinsic photoluminescence and special electrochemical properties. The MnS NPs were characterized using electron microscopy and optical spectroscopic methods. Fourier-transform infrared spectroscopy (FTIR) demonstrated the attachment of citrate on the surface of MnS NPs. The surface modification of insoluble as-prepared MnS NPs by citrate makes them soluble in water. The UV-vis absorption spectra show distinct d-d and ligand to metal charge transfer (LMCT) bands of the citrate-MnS NP nanohybrid. The citrate-MnS NPs exhibited strong photoluminescence. They generated a huge amount of ROS at neutral/acidic pH without any photo-activation which was shown to degrade bilirubin. In addition, the higher ROS generation at pH 5 and pH 7 was exploited to evaluate their anti-bacterial efficacy against Staphylococcus hominis (S. hominis). These observations could pave the path for the designing and development of new-age surface-functionalized metal sulfide NPs for the benefit of human health.

8.
J Phys Chem B ; 126(3): 588-600, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35041417

RESUMO

Complexes of cationic liposomes with DNA have emerged as promising nonviral vectors for delivering genetic information into cells for gene therapy. Kinetics of the liposome/DNA complex (lipoplex) formation on a millisecond time scale are studied by monitoring time evolution of fluorescence of 8-anilino-1-naphthalene sulfonic acid (ANS) and ethidium bromide (EtBr) in a continuous flow microfluidic channel coupled to a fluorescence microscope. The formation of lipoplexes between calf thymus DNA and liposomes based on two novel cationic lipids (Lip1810 and Lip1814) are found to follow a two-step process with kinetic constants for the Lip1814/DNA complex (k1 = 1120-1383 s-1, k2 = 0.227-1.45 s-1) being significantly different from those (k1 = 68.53-98.5 s-1, k2 = 32.3-60.19 s-1) corresponding to formation of the Lip1810/DNA complex. The kinetic pathway leading to the formation of Lip1814/DNA complex is diffusion-controlled whereas the formation of Lip1810/DNA complex occurs by a conformational rearrangement-controlled pathway. The observed difference in the kinetics of lipoplex formation likely originates from different structures of the lipid/DNA complexes.


Assuntos
DNA , Microfluídica , Cátions/química , DNA/química , Lipídeos/química , Lipossomos/química , Plasmídeos , Transfecção
9.
ACS Phys Chem Au ; 2(3): 171-178, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-36855571

RESUMO

We demonstrate experimental evidence of the effect of surface plasmon resonance of noble metal nanoparticles (NPs) on the activity of a well-known biomedicinal drug in the proximity of a semiconductor having a wide band gap for enhanced photodynamic therapy (PDT) efficacy. We have chosen riboflavin (Rf) (or vitamin B2) as a model photosensitizer, attached with ZnO NPs and further attached with gold (Au) NP-decorated ZnO to increase the efficiency. The synthesized nanohybrids are characterized with the help of different microscopic, optical spectroscopic, and density functional theory (DFT)-based techniques. The DFT and time-dependent DFT-based calculations validate the experimental findings. A detailed ultrafast spectroscopic study has been carried out further to study the excited-state charge dynamics in the interface of the nanohybrids. The occurrence of a Förster resonance energy transfer (FRET) between Rf and Au has been found to be the key reason for the increased efficiency in the Rf-ZnO-Au nanohybrid over the Rf-ZnO one. The dipolar coupling between Au and Rf in the Rf-ZnO-Au nanohybrid further facilitates the generation of reactive oxygen species (ROS) in comparison to Rf-ZnO under blue-light irradiation. The greater efficiency in ROS generation by the Rf-ZnO-Au nanohybrid has been utilized for antimicrobial action against methicillin-resistant S. aureus (MRSA). Overall, the present study highlights the dual sensitization for achieving enhanced electron injection efficiency in the Rf-ZnO-Au nanohybrid in order to use it as an antibacterial agent that could be translated in PDT.

10.
ACS Appl Bio Mater ; 4(12): 8259-8266, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35005950

RESUMO

To realize a customizable biogenic delivery platform, herein we propose combining cell-derived extracellular vesicles (EVs) derived from breast cancer cell line MCF-7 with synthetic cationic liposomes using a fusogenic agent, polyethylene glycol (PEG). We performed a fluorescence resonance energy transfer (FRET)-based lipid-mixing assay with varying PEG 1000 concentrations (0%, 15%, and 30%) correlated with flow cytometry-based analysis and supported by dimensional analysis by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) to validate our fusion strategy. Our data revealed that these hybrid vesicles at a particular concentration of PEG (∼15%) improved the cellular delivery efficiency of a model siRNA molecule to the EV parental breast cancer cells, MCF-7, by factors of 2 and 4 compared to the loaded liposome and EV precursors, respectively. The critical rigidity/pliability balance of the hybrid systems fused by PEG seems to be playing a pivotal role in improving their delivery capability. This approach can provide clinically viable delivery solutions using EVs.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Cátions , Feminino , Humanos , Lipossomos , Polietilenoglicóis
11.
ACS Omega ; 5(25): 15666-15672, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32637841

RESUMO

Chelation therapy is one of the most effective and widely accepted methods of treatment to reduce metal toxicity caused by an excess amount of essential metals. Essential minerals play an important role in maintaining healthy human physiology. However, the presence of an excess amount of such essential metals can cause cell injury, which finally leads to severe life-threatening diseases. Chelating complexes can efficiently capture the targeted metal and can easily be excreted from the body. Commonly utilized metal chelators have major side effects including long-term damage to some organs, which has pointed out the need of less harmful biocompatible chelating agents. In this work, we have investigated the iron chelating property of curcumin through various spectroscopic tools by synthesizing and characterizing the iron-curcumin (Fe-Cur) complex. We have also investigated whether the synthesized materials are able to retain their antioxidant activity after the chelation of a substantial amount of metal ion. Our study unravels the improved antioxidant activity of the synthesized chelate complex. We further demonstrate that the proposed complex generates no significant reactive oxygen species (ROS) under dark conditions, which makes it a promising candidate for chelation therapy of iron toxicity. Femtosecond-resolved fluorescence studies further provide insight into the mechanism of activity of the new complex where electron transfer from ligand to metal has been observed prominently. Thus, the Fe-Cur complex has a potential to act as a dual activity medicine for excretion of toxic metal ions via chelation and as a therapeutic agent of oxidative stress caused by the metal ion as well.

12.
RSC Adv ; 10(64): 38890-38899, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35518422

RESUMO

The properties of nanomaterials generated by external stimuli are considered an innovative and promising replacement for the annihilation of bacterial infectious diseases. The present study demonstrates the possibility of getting the antibiotic-like drug action from our newly synthesized nanohybrid (NH), which consists of norfloxacin (NF) as the photosensitive material covalently attached to the ZnO nanoparticle (NP). The synthesized NH has been characterized using various microscopic and spectroscopic techniques. Steady state fluorescence and time-correlated single photon counting (TCSPC)-based spectroscopic studies demonstrate the efficient electron transfer from NF to ZnO. This enhances the reactive oxygen species (ROS) production capability of the system. First principles density functional theory has been calculated to gain insight into the charge separation mechanism. To explore the electron densities of the occupied and unoccupied levels of NH, we have verified the nature of the electronic structure. It is observed that there is a very high possibility of electron transfer from NF to ZnO in the NH system, which validates the experimental findings. Finally, the efficacy of NH compared to NF and ZnO has been estimated on the in vitro culture of E. coli bacteria. We have obtained a significant reduction in the bacterial viability by NH with respect to control in the presence of light. These results suggest that the synthesized NH could be a potential candidate in the new generation alternative antibacterial drugs. Overall, the study depicts a detailed physical insight for nanohybrid systems that can be beneficial for manifold application purposes.

13.
Sci Rep ; 9(1): 19372, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852949

RESUMO

In this work, we have successfully synthesized a bimetallic (Zinc and Cobalt) Zeolitic Imidazolate Framework (Zn50Co50-ZIF), a class in a wider microporous Metal-Organic Framework (MOF) family. The synthesized nanostructures maintain both water stability like ZIF-8 (solely Zn containing) and charge transfer electronic band in the visible optical spectrum as ZIF-67 (solely Co containing). Crystal structure from XRD, high resolution transmission electron microscopy (HRTEM) followed by elemental mapping (EDAX) confirm structural stability and omnipresence of the metal atoms (Zn and Co) across the nanomaterial with equal proportion. Existence of charge transfer state consistent with ZIF67 and intact ultrafast excited state dynamics of the imidazolate moiety in both ZIF-8 and ZIF-67, is evidenced from steady state and time resolved optical spectroscopy. The thermal and aqueous stabilities of Zn50Co50-ZIF are found to be better than ZIF-67 but comparable to ZIF-8 as evidenced by solubility, scanning electron microscopy (SEM) and XRD studies of the material in water. We have evaluated the photoinduced ROS generation by the mixed ZIF employing dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. We have also explored the potentiality of the synthesized material for the alternate remediation of methicillin resistant Staphylococcus aureus (MRSA) infection through the photoinduced reactive oxygen species (ROS) generation and methylene blue (MB) degradation kinetics.


Assuntos
Resistência Microbiana a Medicamentos/efeitos dos fármacos , Estruturas Metalorgânicas/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanoestruturas/química , Compostos Orgânicos/farmacologia , Cobalto/química , Cobalto/farmacologia , Humanos , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Cinética , Estruturas Metalorgânicas/síntese química , Estruturas Metalorgânicas/farmacologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Microscopia Eletrônica de Varredura , Compostos Orgânicos/síntese química , Compostos Orgânicos/química , Espécies Reativas de Oxigênio , Água/química , Microbiologia da Água , Zeolitas/química , Zeolitas/farmacologia , Zinco/química , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA