Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(39): 9325-9368, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37706425

RESUMO

The formation of polymeric micelles in aqueous environments through the self-assembly of amphiphilic polymers can provide a versatile platform to increase the solubility and permeability of hydrophobic drugs and pave the way for their administration. In comparison to various self-assembly-based vehicles, polymeric micelles commonly have a smaller size, spherical morphology, and simpler scale up process. The use of polymer-based micelles for the encapsulation and carrying of therapeutics to the site of action triggered a line of research on the synthesis of various amphiphilic polymers in the past few decades. The extended knowledge on polymers includes biocompatible smart amphiphilic copolymers for the formation of micelles, therapeutics loading and response to external stimuli, micelles with a tunable drug release pattern, etc. Different strategies such as ring-opening polymerization, atom transfer radical polymerization, reversible addition-fragmentation chain-transfer, nitroxide mediated polymerization, and a combination of these methods were employed to synthesize copolymers with diverse compositions and topologies with the proficiency of self-assembly into well-defined micellar structures. The current review provides a summary of the important polymerization techniques and recent achievements in the field of drug delivery using micellar systems. This review proposes new visions for the design and synthesis of innovative potent amphiphilic polymers in order to benefit from their application in drug delivery fields.

2.
Expert Opin Drug Deliv ; 20(1): 131-143, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427011

RESUMO

OBJECTIVES: Designing and fabrication of theranostic systems based on nanoscale gaseous vesicular systems, named nanobubbles (NBs), attracted enormous interest in recent years. Biomimetic vesicular platform (V-RBC-M) can improve the pharmacokinetics of the prepared platform due to augmented circulation half-life, desirable biodegradability and biocompatibility and reduced immunogenicity. METHODS: V-RBC-M were used for the encapsulation of lipophilic camptothecin (CPT) in the bilayer of vesicles through top-down method, followed by filling the core of V-RBC-M with inert SF6 gas to fabricate NBs with ultrasonic contrast enhancement capability (SF6-NB-CPT). In the next step, targeted NBs were formed via decoration of MUC1 aptamer on the surface of NBs (Apt-SF6-NB-CPT). RESULTS: The designed bio-NBs indicated high encapsulation efficiency and the sustained release of CPT at pH 7.4. In vitro study demonstrated higher cellular uptake and cytotoxicity of Apt-SF6-NB-CPT compared to SF6-NB-CPT in MUC1-overexpressing cells (C26). In vivo antitumor efficacy of the prepared NBs on C26 bearing BALB/c mice showed greater therapeutic efficacy and survival rate for Apt-SF6-NB-CPT. In this regard, SF6-NB-CPT showed 58% tumor growth suppression while Apt-SF6-NB-CPT system provided 95% tumor growth suppression. Furthermore, echogenic capability of SF6-NB-CPT was demonstrated through in vitro and in vivo ultrasonic imaging. CONCLUSIONS: Our finding demonstrated that the prepared targeted NBs are a promising theranostic platform with effective therapeutic and diagnotic potentials.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Medicina de Precisão , Eritrócitos
3.
Nanomedicine ; 48: 102645, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549556

RESUMO

Peptosomes, as a vesicular polypeptide-based system and a versatile carrier for co-delivery of hydrophilic and hydrophobic materials, provide great delivery opportunities due to the intrinsic biocompatibility and biodegradability of the polypeptides backbone. In the current study, a novel poly(L-glutamic acid)-block-polylactic acid di-block copolymer (PGA-PLA) was synthesized in two steps. Firstly, γ-benzyl L-glutamate-N-carboxy anhydride (BLG-NCA) and 3,6-dimethyl-1,4-dioxane-2,5-dione were polymerized using N-hexylamine and benzyl alcohol as initiators to produce poly(γ-benzyl L-glutamate (PBLG) and polylactic acid. Then, PBLG was deprotected to produce PGA. Secondly, PGA was conjugated to the benzyl-PLGA to fabricate PGA-PLA diblock copolymer. The synthesized diblock copolymer was used for the encapsulation of doxorubicin, as hydrophilic anticancer and ultra-small superparamagnetic iron oxide nanoparticles (USPIONs) as hydrophobic contrast agent within aqueous core and bilayer of vesicular peptosome, respectively via double emulsion method. The prepared peptosomes (Pep@USPIONs-DOX) controlled the release of DOX (<15 % of the encapsulated DOX release up to 240 h of incubation at the physiological conditions) while increasing the stability and solubility of the hydrophobic USPIONs. Then, AS1411 DNA aptamer was decorated on the surface of the PGA-PLA peptosomes (Apt-Pep@USPIONs-DOX). The prepared targeted and non-targeted platforms showed spherical morphology with hydrodynamic sizes of 265 ± 52 and 229 ± 44 nm respectively. In vitro cellular cytotoxicity and cellular uptake were studied in nucleolin positive (4T1) and nucleolin negative (CHO) cell lines. Cellular uptake of the targeted formulation was greater than that of non-targeted peptosome, while cellular internalization of these peptosomes was identical in CHO cells. Moreover, targeted peptosomes showed greater toxicity than non-targeted peptosome in 4T1 cell line. The prepared theranostic targeted peptosomes demonstrated improved capability in terms of survival rate, biodistribution, tumor suppression efficiency, and MR imaging in the 4T1 tumor-bearing mice.


Assuntos
Nanopartículas , Neoplasias , Cricetinae , Camundongos , Animais , Ácido Glutâmico , Portadores de Fármacos/química , Cricetulus , Medicina de Precisão , Distribuição Tecidual , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/química , Polímeros/química , Poliésteres , Nanopartículas Magnéticas de Óxido de Ferro , Linhagem Celular Tumoral , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos
4.
J Nanobiotechnology ; 20(1): 391, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045404

RESUMO

BACKGROUND: Cancer nanomedicines based on synthetic polypeptides have attracted much attention due to their superior biocompatibility and biodegradability, stimuli responsive capability through secondary conformation change, adjustable functionalities for various cargos such as peptides, proteins, nucleic acids and small therapeutic molecules. Recently, a few nanoformulations based on polypeptides comprising NK105, NC6004, NK911, CT2103, have entered phase I-III clinical trials for advanced solid tumors therapy. In the current study, we prepared polypeptide-based vesicles called peptosome via self-assembly of amphiphilic polypeptide-based PEG-PBLG diblock copolymer. RESULTS: In this regard, poly(γ-benzyl L-glutamate (PBLG) was synthesized via ring opening polymerization (ROP) of γ-benzyl L-glutamate-N-carboxyanhydride (BLG-NCA) using N-hexylamine as initiator. Then amine-terminated PBLG was covalently conjugated to heterofuctional maleimide PEG-carboxylic acid or methyl-PEG-carboxylic acid. The PEG-PBLG peptosomes were prepared through double emulsion method for the co-delivery of doxorubicin.HCl and gold nanorods as hydrophilic and hydrophobic agents in interior compartment and membrane of peptosomes, respectively (Pep@MUA.GNR-DOX) that DOX encapsulation efficiency and loading capacity were determined 42 ± 3.6 and 1.68 ± 3.6. Then, theranostic peptosomes were decorated with thiol-functionalized EpCAM aptamer throught thiol-maleimide reaction producing Apt-Pep@MUA.GNR-DOX for targeted delivery. The non-targeted and targeted peptosomes showed 165.5 ± 1.1 and 185 ± 4.7 nm diameters, respectively while providing sustained, controlled release of DOX. Furthermore, non-targeted and targeted peptosomes showed considerable serum stability. In vitro study on MCF-7 and 4T1 cells showed significantly higher cytotoxicity for Apt-Pep@MUA.GNR-DOX in comparison with Pep@MUA.GNR-DOX while both system did not show any difference in cytotoxicity against CHO cell line. Furthermore, Apt-Pep@MUA.GNR-DOX illustrated higher cellular uptake toward EpCAM-overexpressing 4T1 cells compared to Pep@MUA.GNR-DOX. In preclinical stage, therapeutic and diagnostic capability of the prepared Pep@MUA.GNR-DOX and Apt-Pep@MUA.GNR-DOX were investigated implementing subcutaneous 4T1 tumor model in BALB/c mice. The obtained data indicated highest therapeutic index for Apt-Pep@MUA.GNR-DOX compared to Pep@MUA.GNR-DOX and free DOX. Moreover, the prepared system showed capability of CT imaging of tumor tissue in 4T1 tumorized mice through tumor accumulation even 24 h post-administration. CONCLUSION: In this regard, the synthesized theranostic peptosomes offer innovative hybrid multipurpose platform for fighting against breast cancer.


Assuntos
Nanotubos , Neoplasias , Animais , Ácidos Carboxílicos , Linhagem Celular Tumoral , Doxorrubicina , Sistemas de Liberação de Medicamentos/métodos , Molécula de Adesão da Célula Epitelial , Ácido Glutâmico , Ouro/química , Maleimidas , Camundongos , Nanotubos/química , Neoplasias/tratamento farmacológico , Peptídeos/química , Polietilenoglicóis/química , Compostos de Sulfidrila , Tomografia Computadorizada por Raios X
5.
J Control Release ; 341: 95-117, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774891

RESUMO

Amphiphilic block copolymers are common materials used for the fabrication of various nanostructures with biomedical applications including nanocapsules, nanospheres, micelles and polymeric vesicles. According to the literature, polymersomes have several advantages compared to other nanostructures used as drug delivery systems comprising better stability, facile synthesis, prolonged circulation time, and passive/active targeting capability. Various types of nanoparticles are formed by varying the ratio of the hydrophobic/hydrophilic blocks. Changing hydrophobic/hydrophilic ratio of amphiphilic block copolymers has an impact on the structural characteristics of polymers such as changing molecular weight and surface functionalization of the block copolymer. Thus, polymerization strategies are an important factor that influences polymersomes quality. In this review, different polymerization strategies for the synthesis of block copolymers applied in polymersomes formation, are described.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Polimerização , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA