Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
2.
Front Surg ; 10: 1304343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026479

RESUMO

Background: A new class of subcutaneous electroencephalography has enabled ultra long-term monitoring of people with epilepsy. The objective of this paper is to describe surgeons' experiences in an early series of implantations as well as discomfort or complications experienced by the participants. Methods: We included 38 implantation procedures from two trials on people with epilepsy and healthy adults. Questionnaires to assess surgeons' and participants' experience were analyzed as well as all recorded adverse events occurring up to 21 days post-surgery. Results: With training, the implantation could be performed in approximately 15 min. Overall, the implantation procedure was considered easy to perform with only 2 episodes where the implant got fixated in the introducing needle and a new implant had to be used. The explantation procedure was considered effortless. In 2 cases the silicone sheath covering the lead was damaged during the explantation, but it was possible to remove the entire implant without leaving any foreign body under the skin. Especially in the trial on healthy participants, a proportion experienced adverse events in the form of headache or implant-pain up to 21 days post-operatively. In 6 cases, adverse events contributed to the decision to explant and discontinue the study: Four of these cases involved implant pain or headache; One case involved a post-operative local infection; and in one case superficial lead placement resulted in skin perforation a few weeks after implantation. Conclusion: The implantation and explantation procedures are considered swift and easy to perform by both neurosurgeons and ENT surgeons. The implant is well tolerated by most participants. However, headache or pain around the implant can occur for up to 21 days post-operatively as anticipated with any such surgery. The expected benefits from the implant should always outweigh the potential disadvantages.

3.
Br J Neurosurg ; : 1-7, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652406

RESUMO

PURPOSE: We report what we believe is the first application of robotically constrained image-guided surgery to approach a fistulous micro-arteriovenous malformation in a highly eloquent location. Drawing on institutional experience with a supervisory-control robotic system, a series of steps were devised to deliver a tubular retractor system to a deeply situated micro-arteriovenous malformation. The surgical footprint of this procedure was minimised along with the neurological morbidity. We hope that our contribution will be of assistance to others in integrating such systems given a similar clinical problem. CLINICAL PRESENTATION: A right-handed 9-year old girl presented to her local emergency department after a sudden onset of severe headache accompanied by vomiting. An intracranial haemorrhage centred in the right centrum semiovale with intraventricular extension was evident and she was transferred urgently to the regional paediatric neurosurgical centre, where an external ventricular drain (EVD) was sited. A digital subtraction angiogram demonstrated a small right hemispheric arteriovenous shunt irrigated by peripheral branches of the middle cerebral artery & a robotically facilitated parafasicular microsurgical approach was performed to disconnect the arteriovenous malformation. CONCLUSION: We describe the successful microsurgical in-situ disconnection of a deeply-situated, fistulous micro-AVM via a port system itself delivered directly to the target with a supervisory-control robotic system. This minimised the surgical disturbance along a relatively long white matter trajectory and demonstrates the feasibility of this approach for deeply located arteriovenous fistulae or fistulous AVMs.

4.
Brain ; 146(12): 5015-5030, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37433037

RESUMO

Subthalamic nucleus (STN) beta-triggered adaptive deep brain stimulation (ADBS) has been shown to provide clinical improvement comparable to conventional continuous DBS (CDBS) with less energy delivered to the brain and less stimulation induced side effects. However, several questions remain unanswered. First, there is a normal physiological reduction of STN beta band power just prior to and during voluntary movement. ADBS systems will therefore reduce or cease stimulation during movement in people with Parkinson's disease and could therefore compromise motor performance compared to CDBS. Second, beta power was smoothed and estimated over a time period of 400 ms in most previous ADBS studies, but a shorter smoothing period could have the advantage of being more sensitive to changes in beta power, which could enhance motor performance. In this study, we addressed these two questions by evaluating the effectiveness of STN beta-triggered ADBS using a standard 400 ms and a shorter 200 ms smoothing window during reaching movements. Results from 13 people with Parkinson's disease showed that reducing the smoothing window for quantifying beta did lead to shortened beta burst durations by increasing the number of beta bursts shorter than 200 ms and more frequent switching on/off of the stimulator but had no behavioural effects. Both ADBS and CDBS improved motor performance to an equivalent extent compared to no DBS. Secondary analysis revealed that there were independent effects of a decrease in beta power and an increase in gamma power in predicting faster movement speed, while a decrease in beta event related desynchronization (ERD) predicted quicker movement initiation. CDBS suppressed both beta and gamma more than ADBS, whereas beta ERD was reduced to a similar level during CDBS and ADBS compared with no DBS, which together explained the achieved similar performance improvement in reaching movements during CDBS and ADBS. In addition, ADBS significantly improved tremor compared with no DBS but was not as effective as CDBS. These results suggest that STN beta-triggered ADBS is effective in improving motor performance during reaching movements in people with Parkinson's disease, and that shortening of the smoothing window does not result in any additional behavioural benefit. When developing ADBS systems for Parkinson's disease, it might not be necessary to track very fast beta dynamics; combining beta, gamma, and information from motor decoding might be more beneficial with additional biomarkers needed for optimal treatment of tremor.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Tremor/terapia , Movimento/fisiologia , Núcleo Subtalâmico/fisiologia
5.
Elife ; 122023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810199

RESUMO

Periodic features of neural time-series data, such as local field potentials (LFPs), are often quantified using power spectra. While the aperiodic exponent of spectra is typically disregarded, it is nevertheless modulated in a physiologically relevant manner and was recently hypothesised to reflect excitation/inhibition (E/I) balance in neuronal populations. Here, we used a cross-species in vivo electrophysiological approach to test the E/I hypothesis in the context of experimental and idiopathic Parkinsonism. We demonstrate in dopamine-depleted rats that aperiodic exponents and power at 30-100 Hz in subthalamic nucleus (STN) LFPs reflect defined changes in basal ganglia network activity; higher aperiodic exponents tally with lower levels of STN neuron firing and a balance tipped towards inhibition. Using STN-LFPs recorded from awake Parkinson's patients, we show that higher exponents accompany dopaminergic medication and deep brain stimulation (DBS) of STN, consistent with untreated Parkinson's manifesting as reduced inhibition and hyperactivity of STN. These results suggest that the aperiodic exponent of STN-LFPs in Parkinsonism reflects E/I balance and might be a candidate biomarker for adaptive DBS.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Transtornos Parkinsonianos , Núcleo Subtalâmico , Ratos , Animais , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Núcleo Subtalâmico/fisiologia , Gânglios da Base
6.
Neurobiol Dis ; 178: 106019, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706929

RESUMO

Evoked resonant neural activity (ERNA) is induced by subthalamic deep brain stimulation (DBS) and was recently suggested as a marker of lead placement and contact selection in Parkinson's disease. Yet, its underlying mechanisms and how it is modulated by stimulation parameters are unclear. Here, we recorded local field potentials from 27 Parkinson's disease patients, while leads were externalised to scrutinise the ERNA. First, we show that ERNA in the time series waveform and spectrogram likely represent the same activity, which was contested before. Second, our results show that the ERNA has fast and slow dynamics during stimulation, consistent with the synaptic failure hypothesis. Third, we show that ERNA parameters are modulated by different DBS frequencies, intensities, medication states and stimulation modes (continuous DBS vs. adaptive DBS). These results suggest the ERNA might prove useful as a predictor of the best DBS frequency and lowest effective intensity in addition to contact selection. Changes with levodopa and DBS mode suggest that the ERNA may indicate the state of the cortico-basal ganglia circuit making it a putative biomarker to track clinical state in adaptive DBS.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/fisiologia , Estimulação Encefálica Profunda/métodos , Gânglios da Base , Levodopa/farmacologia , Potenciais Evocados/fisiologia
7.
Br J Neurosurg ; 37(6): 1689-1692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34187266

RESUMO

BACKGROUND AND IMPORTANCE: Insertion of ventricular catheters into small ventricles may require image guidance. Several options exist, including ultrasound guidance, frameless, and frame-based stereotactic approaches. There is no literature on management options when conventional image guidance fails to cannulate the ventricle. The accuracy of the robotic arm is well established in functional and epilepsy surgery. We report the first case using the Neuromate® robot for the placement of a shunt ventricular catheter into the lateral ventricle after a failed attempt with a more commonly used frameless electromagnetic navigation system. CLINICAL PRESENTATION: A 30-year-old man had twice previously undergone foramen magnum decompression for a Chiari 1 malformation. He subsequently developed a significant cervical syrinx with clinical deterioration and a decision was made to place a ventriculoperitoneal shunt. As the ventricles were small, frameless electromagnetic navigation was used but the ventricle could not be cannulated. The Neuromate® robot was subsequently used to place the ventricular catheter successfully. CONCLUSION: Neuromate® robot-assisted ventricular catheter placement may be considered when difficulty is experienced with more commonly used image guidance techniques.


Assuntos
Robótica , Masculino , Humanos , Adulto , Neuronavegação/métodos , Cateterismo/métodos , Catéteres , Derivação Ventriculoperitoneal/métodos
8.
Br J Neurosurg ; 37(5): 1040-1045, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33416411

RESUMO

PURPOSE: The subthalamic nucleus (STN) and globus pallidus internus (GPi) targets for deep brain stimulation (DBS) can be defined by atlas coordinates or direct visualisation of the target on MRI. The aim of this study was to evaluate geometric differences between atlas-based targeting and MRI-guided direct targeting. METHODS: One-hundred-nine Parkinson's disease or dystonia patients records who underwent DBS surgery between 2005 and 2016 were prospectively reviewed. MRI-guided direct targeting coordinates was used to implant 205 STN and 64 GPi electrodes and compared with atlas-based coordinates. RESULTS: The directly targeted coordinates (mean, SD, range) for STN were x: [9.9 ± 1.1 (7.1 - 13.2)], y: [-0.8 ± 1.1 (-4.2 - 2)] and z: [-4.7 ± 0.53 (-5.9 - -3.2)]. The mean value for the STN was 2.1 mm more medial (p < 0.0001), 1.2 mm more anterior (p < 0.0001) and 0.7 mm more ventral (p < 0.0001) than the atlas target. The targeted coordinates for GPi were x: [22.3 ± 2.0 (17.8 - 26.1)], y: [-0.2 ± 2.2 (-4.5 - 3.4)], z: [-4.3 ± 0.8 (-6.2 - -2.3)]. The mean value for the GPi was 2.2 mm (p < 0.001) more posterior and 0.3 mm (p < 0.01) more ventral than the atlas-based coordinates. CONCLUSION: MRI-guided targeting may be more accurate than atlas-based targeting due to individual variations in anatomy.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/cirurgia , Globo Pálido/fisiologia , Imageamento por Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia
9.
Parkinsonism Relat Disord ; 105: 103-110, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36403506

RESUMO

OBJECTIVES: In adults with dystonia Probabilistic Stimulation Mapping (PSM) has identified putative "sweet spots" for stimulation. We aimed to apply PSM to a cohort of Children and Young People (CYP) following DBS surgery. METHODS: Pre-operative MRI and post-operative CT images were co-registered for 52 CYP undergoing bilateral pallidal DBS (n = 31 genetic/idiopathic dystonia, and n = 21 Cerebral Palsy (CP)). DBS electrodes (n = 104) were automatically detected, and Volumes of Tissue Activation (VTA) derived from individual patient stimulation settings. VTAs were normalised to the MNI105 space, weighted by percentage improvement in Burke-Fahn-Marsden Dystonia Rating scale (BFMDRS) at one-year post surgery and mean improvement was calculated for each voxel. RESULTS: For the genetic/idiopathic dystonia group, BFMDRS improvement was associated with stimulation across a broad volume of the GPi. A spatial clustering of the upper 25th percentile of voxels corresponded with a more delineated volume within the posterior ventrolateral GPi. The MNI coordinates of the centroid of this volume (X = -23.0, Y = -10.5 and Z = -3.5) were posterior and superior to the typical target for electrode placement. Volume of VTA overlap with a previously published "sweet spots" correlated with improvement following surgery. In contrast, there was minimal BFMDRS improvement for the CP group, no spatial clustering of efficacious clusters and a correlation between established "sweet spots" could not be established. CONCLUSIONS: PSM in CYP with genetic/idiopathic dystonia suggests the presence of a "sweet spot" for electrode placement within the GPi, consistent with previous studies. Further work is required to identify and validate putative "sweet spots" across different cohorts of patients.


Assuntos
Paralisia Cerebral , Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Adulto , Criança , Humanos , Adolescente , Distonia/diagnóstico por imagem , Distonia/terapia , Distúrbios Distônicos/diagnóstico por imagem , Distúrbios Distônicos/terapia , Globo Pálido/diagnóstico por imagem
10.
J Transl Med ; 19(1): 430, 2021 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-34656120

RESUMO

BACKGROUND: Central itch syndrome has been previously described in conditions such as stroke. The neurophysiology of central itch syndrome has been investigated in non-human primates but remains incompletely understood. METHODS: We report an observational study of a rare case of severe central itch following thalamic deep brain stimulation and postulate the location of the central itch centre in humans. RESULTS: The patient was a 47-year-old female, with congenital spinal malformations, multiple previous corrective spinal surgeries and a 30-year history of refractory neuropathic pain in her back and inferior limbs. Following multidisciplinary pain assessment and recommendation, she was referred for spinal cord stimulation, but the procedure failed technically due to scarring related to her multiple previous spinal surgeries. She was therefore referred to our centre and underwent bilateral deep brain stimulation (DBS) of the ventral posterolateral nucleus of the thalamus for management of her chronic pain. Four weeks after switching on the stimulation, the patient reported significant improvement in her pain but developed a full body progressive itch which was then complicated with a rash. Common causes of skin eczema were ruled out by multiple formal dermatological evaluation. A trial of unilateral "off stimulation" was performed showing improvement of the itchy rash. Standard and normalized brain atlases were used to localize the active stimulating contact within the thalamus at a location we postulate as the central itch centre. CONCLUSIONS: Precise stereotactic imaging points to the lateral portion of the ventral posterolateral and posteroinferior nuclei of the thalamus as critical in the neurophysiology of itch in humans.


Assuntos
Dor Crônica , Estimulação Encefálica Profunda , Neuralgia , Animais , Feminino , Humanos , Neuralgia/terapia , Medição da Dor , Tálamo
11.
J Neurosurg Pediatr ; 27(6): 677-687, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33862592

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) is an established treatment for pediatric dystonia. The accuracy of electrode implantation is multifactorial and remains a challenge in this age group, mainly due to smaller anatomical targets in very young patients compared to adults, and also due to anatomical abnormalities frequently associated with some etiologies of dystonia. Data on the accuracy of robot-assisted DBS surgery in children are limited. The aim of the current paper was to assess the accuracy of robot-assisted implantation of DBS leads in a series of patients with childhood-onset dystonia. METHODS: Forty-five children with dystonia undergoing implantation of DBS leads under general anesthesia between 2017 and 2019 were included. Robot-assisted stereotactic implantation of the DBS leads was performed. The final position of the electrodes was verified with an intraoperative 3D scanner (O-arm). Coordinates of the planned electrode target and actual electrode position were obtained and compared, looking at the radial error, depth error, absolute error, and directional error, as well as the euclidean distance. Functional assessment data prospectively collected by a multidisciplinary pediatric complex motor disorders team were analyzed with regard to motor skills, individualized goal achievement, and patients' and caregivers' expectations. RESULTS: A total of 90 DBS electrodes were implanted and 48.5% of the patients were female. The mean age was 11.0 ± 0.6 years (range 3-18 years). All patients received bilateral DBS electrodes into the globus pallidus internus. The median absolute errors in x-, y-, and z-axes were 0.85 mm (range 0.00-3.25 mm), 0.75 mm (range 0.05-2.45 mm), and 0.75 mm (range 0.00-3.50 mm), respectively. The median euclidean distance from the target to the actual electrode position was 1.69 ± 0.92 mm, and the median radial error was 1.21 ± 0.79. The robot-assisted technique was easily integrated into the authors' surgical practice, improving accuracy and efficiency, and reducing surgical time significantly along the learning curve. No major perioperative complications occurred. CONCLUSIONS: Robot-assisted stereotactic implantation of DBS electrodes in the pediatric age group is a safe and accurate surgical method. Greater accuracy was present in this cohort in comparison to previous studies in which conventional stereotactic frame-based techniques were used. Robotic DBS surgery and neuroradiological advances may result in further improvement in surgical targeting and, consequently, in better clinical outcome in the pediatric population.


Assuntos
Estimulação Encefálica Profunda/métodos , Distúrbios Distônicos/cirurgia , Procedimentos Cirúrgicos Robóticos/métodos , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Estudos Prospectivos
13.
Stereotact Funct Neurosurg ; 99(2): 93-106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33260175

RESUMO

INTRODUCTION: Deep brain stimulation (DBS) surgery is an established treatment for movement disorders. Advances in neuroimaging techniques have resulted in improved targeting accuracy that may improve clinical outcomes. This study aimed to evaluate the safety and feasibility of using the Medtronic O-arm device for the acquisition of intraoperative stereotactic imaging, targeting, and localization of DBS electrodes compared with standard stereotactic MRI or computed tomography (CT). METHODS: Patients were recruited prospectively into the study. Routine frame-based stereotactic DBS surgery was performed. Intraoperative imaging was used to facilitate and verify the accurate placement of the intracranial electrodes. The acquisition of coordinates and verification of the position of the electrodes using the O-arm were evaluated and compared with conventional stereotactic MRI or CT. Additionally, a systematic review of the literature on the use of intraoperative imaging in DBS surgery was performed. RESULTS: Eighty patients were included. The indications for DBS surgery were dystonia, Parkinson's disease, essential tremor, and epilepsy. The globus pallidus internus was the most commonly targeted region (43.7%), followed by the subthalamic nucleus (35%). Stereotactic O-arm imaging reduced the overall surgical time by 68 min, reduced the length of time of acquisition of stereotactic images by 77%, reduced patient exposure to ionizing radiation by 24.2%, significantly reduced operating room (OR) costs per procedure by 31%, and increased the OR and neuroradiology suite availability. CONCLUSIONS: The use of the O-arm in DBS surgery workflow significantly reduced the duration of image acquisition, the exposure to ionizing radiation, and costs when compared with standard stereotactic MRI or CT, without reducing accuracy.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Cirurgia Assistida por Computador , Análise Custo-Benefício , Humanos , Imageamento Tridimensional , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/cirurgia , Tomografia Computadorizada por Raios X , Fluxo de Trabalho
14.
Acta Neurochir (Wien) ; 163(2): 317-329, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33222008

RESUMO

INTRODUCTION AND OBJECTIVES: The novel severe acute respiratory syndrome coronavirus 2 (COVID-19) pandemic has had drastic effects on global healthcare with the UK amongst the countries most severely impacted. The aim of this study was to examine how COVID-19 challenged the neurosurgical delivery of care in a busy tertiary unit serving a socio-economically diverse population. METHODS: A prospective single-centre cohort study including all patients referred to the acute neurosurgical service or the subspecialty multidisciplinary teams (MDT) as well as all emergency and elective admissions during COVID-19 (18th March 2020-15th May 2020) compared to pre-COVID-19 (18th of January 2020-17th March 2020). Data on demographics, diagnosis, operation, and treatment recommendation/outcome were collected and analysed. RESULTS: Overall, there was a reduction in neurosurgical emergency referrals by 33.6% and operations by 55.6% during the course of COVID-19. There was a significant increase in the proportion of emergency operations performed during COVID-19 (75.2% of total, n=155) when compared to pre-COVID-19 (n = 198, 43.7% of total, p < 0.00001). In contrast to other published series, the 30-day perioperative mortality remained low (2.0%) with the majority of post-operative COVID-19-infected patients (n = 13) having underlying medical co-morbidities and/or suffering from post-operative complications. CONCLUSION: The capacity to safely treat patients requiring urgent or emergency neurosurgical care was maintained at all times. Strategies adopted to enable this included proactively approaching the referrers to maintain lines of communications, incorporating modern technology to run clinics and MDTs, restructuring patient pathways/facilities, and initiating the delivery of NHS care within private sector hospitals. Through this multi-modal approach we were able to minimize service disruptions, the complications, and mortality.


Assuntos
COVID-19/complicações , Neurocirurgia , COVID-19/fisiopatologia , Estudos de Coortes , Comorbidade , Procedimentos Cirúrgicos Eletivos , Serviços Médicos de Emergência , Feminino , Saúde Global , Hospitalização , Humanos , Comunicação Interdisciplinar , Masculino , Procedimentos Neurocirúrgicos , Pandemias , Equipe de Assistência ao Paciente , Segurança do Paciente , Estudos Prospectivos , Encaminhamento e Consulta , SARS-CoV-2 , Medicina Estatal , Reino Unido
15.
Neuromodulation ; 24(2): 380-391, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32573906

RESUMO

BACKGROUND: Lesch-Nyhan syndrome (LNS) is a rare genetic disorder characterized by a deficiency of hypoxanthine-guanine phosphoribosyltransferase enzyme. It manifests during infancy with compulsive self-mutilation behavior associated with disabling generalized dystonia and dyskinesia. Clinical management of these patients poses an enormous challenge for medical teams and carers. OBJECTIVES: We report our experience with bilateral deep brain stimulation (DBS) of the globus pallidus internus (GPi) in the management of this complex disorder. MATERIALS AND METHODS: Preoperative and postoperative functional assessment data prospectively collected by a multidisciplinary pediatric complex motor disorders team, including imaging, neuropsychology, and neurophysiology evaluations were analyzed with regards to motor and behavioral control, goal achievement, and patient and caregivers' expectations. RESULTS: Four male patients (mean age 13 years) underwent DBS implantation between 2011 and 2018. Three patients received double bilateral DBS electrodes within the posteroventral GPi and the anteromedial GPi, whereas one patient had bilateral electrodes placed in the posteroventral GPi only. Median follow-up was 47.5 months (range 22-98 months). Functional improvement was observed in all patients and discussed in relation to previous reports. Analysis of structural connectivity revealed significant correlation between the involvement of specific cortical regions and clinical outcome. CONCLUSION: Combined bilateral stimulation of the anteromedial and posteroventral GPi may be considered as an option for managing refractory dystonia and self-harm behavior in LNS patients. A multidisciplinary team-based approach is essential for patient selection and management, to support children and families, to achieve functional improvement and alleviate the overall disease burden for patients and caregivers.


Assuntos
Estimulação Encefálica Profunda , Distúrbios Distônicos , Síndrome de Lesch-Nyhan , Criança , Distúrbios Distônicos/terapia , Globo Pálido , Humanos , Síndrome de Lesch-Nyhan/terapia , Masculino , Resultado do Tratamento
16.
Elife ; 92020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33205752

RESUMO

Previous studies have explored neurofeedback training for Parkinsonian patients to suppress beta oscillations in the subthalamic nucleus (STN). However, its impacts on movements and Parkinsonian tremor are unclear. We developed a neurofeedback paradigm targeting STN beta bursts and investigated whether neurofeedback training could improve motor initiation in Parkinson's disease compared to passive observation. Our task additionally allowed us to test which endogenous changes in oscillatory STN activities are associated with trial-to-trial motor performance. Neurofeedback training reduced beta synchrony and increased gamma activity within the STN, and reduced beta band coupling between the STN and motor cortex. These changes were accompanied by reduced reaction times in subsequently cued movements. However, in Parkinsonian patients with pre-existing symptoms of tremor, successful volitional beta suppression was associated with an amplification of tremor which correlated with theta band activity in STN local field potentials, suggesting an additional cross-frequency interaction between STN beta and theta activities.


Assuntos
Ritmo beta , Atividade Motora/fisiologia , Neurorretroalimentação , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Tremor , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Brain ; 143(11): 3242-3261, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33150406

RESUMO

Heterozygous mutations in KMT2B are associated with an early-onset, progressive and often complex dystonia (DYT28). Key characteristics of typical disease include focal motor features at disease presentation, evolving through a caudocranial pattern into generalized dystonia, with prominent oromandibular, laryngeal and cervical involvement. Although KMT2B-related disease is emerging as one of the most common causes of early-onset genetic dystonia, much remains to be understood about the full spectrum of the disease. We describe a cohort of 53 patients with KMT2B mutations, with detailed delineation of their clinical phenotype and molecular genetic features. We report new disease presentations, including atypical patterns of dystonia evolution and a subgroup of patients with a non-dystonic neurodevelopmental phenotype. In addition to the previously reported systemic features, our study has identified co-morbidities, including the risk of status dystonicus, intrauterine growth retardation, and endocrinopathies. Analysis of this study cohort (n = 53) in tandem with published cases (n = 80) revealed that patients with chromosomal deletions and protein truncating variants had a significantly higher burden of systemic disease (with earlier onset of dystonia) than those with missense variants. Eighteen individuals had detailed longitudinal data available after insertion of deep brain stimulation for medically refractory dystonia. Median age at deep brain stimulation was 11.5 years (range: 4.5-37.0 years). Follow-up after deep brain stimulation ranged from 0.25 to 22 years. Significant improvement of motor function and disability (as assessed by the Burke Fahn Marsden's Dystonia Rating Scales, BFMDRS-M and BFMDRS-D) was evident at 6 months, 1 year and last follow-up (motor, P = 0.001, P = 0.004, and P = 0.012; disability, P = 0.009, P = 0.002 and P = 0.012). At 1 year post-deep brain stimulation, >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%. In the long-term deep brain stimulation cohort (deep brain stimulation inserted for >5 years, n = 8), improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively. The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical (50.5%) dystonia, with less clinical impact on laryngeal dystonia. Improvements in gait dystonia decreased from 20.9% at 1 year to 16.2% at last assessment; no patient maintained a fully independent gait. Reduction of BFMDRS-D was maintained for swallowing (52.9%). Five patients developed mild parkinsonism following deep brain stimulation. KMT2B-related disease comprises an expanding continuum from infancy to adulthood, with early evidence of genotype-phenotype correlations. Except for laryngeal dysphonia, deep brain stimulation provides a significant improvement in quality of life and function with sustained clinical benefit depending on symptoms distribution.


Assuntos
Distúrbios Distônicos/genética , Histona-Lisina N-Metiltransferase/genética , Adolescente , Adulto , Criança , Pré-Escolar , Deleção Cromossômica , Estudos de Coortes , Simulação por Computador , Estimulação Encefálica Profunda , Progressão da Doença , Distúrbios Distônicos/terapia , Doenças do Sistema Endócrino/complicações , Doenças do Sistema Endócrino/genética , Feminino , Retardo do Crescimento Fetal/genética , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Doenças da Laringe/etiologia , Doenças da Laringe/terapia , Masculino , Mutação , Mutação de Sentido Incorreto , Fenótipo , Qualidade de Vida , Resultado do Tratamento , Adulto Jovem
18.
Sleep Med Rev ; 52: 101317, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32446196

RESUMO

Early studies posited a relationship between sleep and the basal ganglia, but this relationship has received little attention recently. It is timely to revisit this relationship, given new insights into the functional anatomy of the basal ganglia and the physiology of sleep, which has been made possible by modern techniques such as chemogenetic and optogenetic mapping of neural circuits in rodents and intracranial recording, functional imaging, and a better understanding of human sleep disorders. We discuss the functional anatomy of the basal ganglia, and review evidence implicating their role in sleep. Whilst these studies are in their infancy, we suggest that the basal ganglia may play an integral role in the sleep-wake cycle, specifically by contributing to a thalamo-cortical-basal ganglia oscillatory network in slow-wave sleep which facilitates neural plasticity, and an active state during REM sleep which enables the enactment of cognitive and emotional networks. A better understanding of sleep mechanisms may pave the way for more effective neuromodulation strategies for sleep and basal ganglia disorders.


Assuntos
Gânglios da Base/fisiopatologia , Vias Neurais/fisiologia , Transtornos do Sono-Vigília/fisiopatologia , Sono/fisiologia , Humanos
19.
Neuromodulation ; 23(4): 509-514, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32281215

RESUMO

OBJECTIVES: Unilateral subthalamic nucleus (STN) deep brain stimulation (DBS) for Parkinson's disease (PD) improves ipsilateral symptoms, but how this occurs is not well understood. We investigated whether unilateral STN DBS suppresses contralateral STN beta activity in the local field potential (LFP), since previous research has shown that activity in the beta band can correlate with the severity of contralateral clinical symptoms and is modulated by DBS. MATERIALS AND METHODS: We recorded STN LFPs from 14 patients who underwent bilateral STN DBS for PD. Following a baseline recording, unilateral STN stimulation was delivered at therapeutic parameters while LFPs were recorded from the contralateral (unstimulated) STN. RESULTS: Unilateral STN DBS suppressed contralateral beta power (p = 0.039, relative suppression = -5.7% ± [SD] 16% when averaging across the highest beta peak channels; p = 0.033, relative suppression = -5.2% ± 13% when averaging across all channels). Unilateral STN DBS produced a 17% ipsilateral (p = 0.016) and 29% contralateral (p = 0.002) improvement in upper limb hemi-body bradykinesia-rigidity (UPDRS-III, items 3.3-3.6). The ipsilateral clinical improvement and the change in contralateral beta power were not significantly correlated. CONCLUSIONS: Unilateral STN DBS suppresses contralateral STN beta LFP. This indicates that unilateral STN DBS modulates bilateral basal ganglia networks. It remains unclear whether this mechanism accounts for the ipsilateral motor improvements.


Assuntos
Estimulação Encefálica Profunda/métodos , Lateralidade Funcional/fisiologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiopatologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Stereotact Funct Neurosurg ; 98(1): 43-47, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32069466

RESUMO

INTRODUCTION: Deep brain stimulation (DBS) is an established treatment for movement disorders. We have previously shown that in our practice, the majority of adult patients prefer fixed-life implantable pulse generators (IPGs), although rechargeable batteries are increasingly used. The aim of this study was to evaluate patients' long-term satisfaction with their choice of battery and factors that influence their decision. METHODS: Thirty patients with DBS were given a questionnaire to assess long-term satisfaction and experience with the type of battery they had chosen. RESULTS: Twenty-six patients completed the survey. The mean age was 67.7 ± 7.3 years, and mean follow-up was 18.0 ± 7.2 months. The indications for DBS were Parkinson's disease (76.9%), tremor (11.5%) and dystonia (11.5%). Eleven patients (42.5%) had chosen the rechargeable battery. All patients were still happy with their choices and would not change the type of battery if they had the chance to do so. However, in patients who chose the fixed-life battery, concern about the size of battery rose from 6.7% pre-operatively to 60% on long-term post-operative follow-up. In patients who chose the rechargeable battery, concern about the need to recharge the battery did not change, remaining low postoperatively. Interestingly, even though the main reason cited for choosing the fixed-life battery was the convenience and concern about forgetting to recharge the battery, patients who had chosen a rechargeable IPG did not experience this problem. CONCLUSION: Patients and caregivers should be involved in the choice of battery, as each type of IPG has its own advantages and disadvantages. Long-term evaluation of patient's experience and satisfaction with battery of choice revealed that size of the IPG, need for further replacement surgeries and need for recharging remain matters of major concern. Although preoperatively often underestimated, the size of the battery seems to be an important factor in long-term satisfaction.


Assuntos
Estimulação Encefálica Profunda/métodos , Estimulação Encefálica Profunda/psicologia , Neuroestimuladores Implantáveis/psicologia , Preferência do Paciente/psicologia , Satisfação do Paciente , Inquéritos e Questionários , Idoso , Idoso de 80 Anos ou mais , Estimulação Encefálica Profunda/instrumentação , Distúrbios Distônicos/psicologia , Distúrbios Distônicos/terapia , Eletrodos Implantados/psicologia , Eletrodos Implantados/tendências , Feminino , Humanos , Neuroestimuladores Implantáveis/tendências , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/psicologia , Doença de Parkinson/terapia , Estudos Prospectivos , Tremor/psicologia , Tremor/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA