Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862024

RESUMO

Animals have exquisite control of their bodies, allowing them to perform a diverse range of behaviors. How such control is implemented by the brain, however, remains unclear. Advancing our understanding requires models that can relate principles of control to the structure of neural activity in behaving animals. To facilitate this, we built a 'virtual rodent', in which an artificial neural network actuates a biomechanically realistic model of the rat 1 in a physics simulator 2. We used deep reinforcement learning 3-5 to train the virtual agent to imitate the behavior of freely-moving rats, thus allowing us to compare neural activity recorded in real rats to the network activity of a virtual rodent mimicking their behavior. We found that neural activity in the sensorimotor striatum and motor cortex was better predicted by the virtual rodent's network activity than by any features of the real rat's movements, consistent with both regions implementing inverse dynamics 6. Furthermore, the network's latent variability predicted the structure of neural variability across behaviors and afforded robustness in a way consistent with the minimal intervention principle of optimal feedback control 7. These results demonstrate how physical simulation of biomechanically realistic virtual animals can help interpret the structure of neural activity across behavior and relate it to theoretical principles of motor control.

2.
Sci Robot ; 9(89): eadi8022, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598610

RESUMO

We investigated whether deep reinforcement learning (deep RL) is able to synthesize sophisticated and safe movement skills for a low-cost, miniature humanoid robot that can be composed into complex behavioral strategies. We used deep RL to train a humanoid robot to play a simplified one-versus-one soccer game. The resulting agent exhibits robust and dynamic movement skills, such as rapid fall recovery, walking, turning, and kicking, and it transitions between them in a smooth and efficient manner. It also learned to anticipate ball movements and block opponent shots. The agent's tactical behavior adapts to specific game contexts in a way that would be impractical to manually design. Our agent was trained in simulation and transferred to real robots zero-shot. A combination of sufficiently high-frequency control, targeted dynamics randomization, and perturbations during training enabled good-quality transfer. In experiments, the agent walked 181% faster, turned 302% faster, took 63% less time to get up, and kicked a ball 34% faster than a scripted baseline.


Assuntos
Robótica , Futebol , Robótica/métodos , Aprendizagem , Caminhada , Simulação por Computador
3.
Sci Robot ; 7(69): eabo0235, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36044556

RESUMO

Learning to combine control at the level of joint torques with longer-term goal-directed behavior is a long-standing challenge for physically embodied artificial agents. Intelligent behavior in the physical world unfolds across multiple spatial and temporal scales: Although movements are ultimately executed at the level of instantaneous muscle tensions or joint torques, they must be selected to serve goals that are defined on much longer time scales and that often involve complex interactions with the environment and other agents. Recent research has demonstrated the potential of learning-based approaches applied to the respective problems of complex movement, long-term planning, and multiagent coordination. However, their integration traditionally required the design and optimization of independent subsystems and remains challenging. In this work, we tackled the integration of motor control and long-horizon decision-making in the context of simulated humanoid football, which requires agile motor control and multiagent coordination. We optimized teams of agents to play simulated football via reinforcement learning, constraining the solution space to that of plausible movements learned using human motion capture data. They were trained to maximize several environment rewards and to imitate pretrained football-specific skills if doing so led to improved performance. The result is a team of coordinated humanoid football players that exhibit complex behavior at different scales, quantified by a range of analysis and statistics, including those used in real-world sport analytics. Our work constitutes a complete demonstration of learned integrated decision-making at multiple scales in a multiagent setting.


Assuntos
Futebol Americano , Futebol , Humanos , Aprendizagem , Movimento , Reforço Psicológico , Futebol/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA