Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Nature ; 628(8006): 162-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538791

RESUMO

Ageing of the immune system is characterized by decreased lymphopoiesis and adaptive immunity, and increased inflammation and myeloid pathologies1,2. Age-related changes in populations of self-renewing haematopoietic stem cells (HSCs) are thought to underlie these phenomena3. During youth, HSCs with balanced output of lymphoid and myeloid cells (bal-HSCs) predominate over HSCs with myeloid-biased output (my-HSCs), thereby promoting the lymphopoiesis required for initiating adaptive immune responses, while limiting the production of myeloid cells, which can be pro-inflammatory4. Ageing is associated with increased proportions of my-HSCs, resulting in decreased lymphopoiesis and increased myelopoiesis3,5,6. Transfer of bal-HSCs results in abundant lymphoid and myeloid cells, a stable phenotype that is retained after secondary transfer; my-HSCs also retain their patterns of production after secondary transfer5. The origin and potential interconversion of these two subsets is still unclear. If they are separate subsets postnatally, it might be possible to reverse the ageing phenotype by eliminating my-HSCs in aged mice. Here we demonstrate that antibody-mediated depletion of my-HSCs in aged mice restores characteristic features of a more youthful immune system, including increasing common lymphocyte progenitors, naive T cells and B cells, while decreasing age-related markers of immune decline. Depletion of my-HSCs in aged mice improves primary and secondary adaptive immune responses to viral infection. These findings may have relevance to the understanding and intervention of diseases exacerbated or caused by dominance of the haematopoietic system by my-HSCs.


Assuntos
Imunidade Adaptativa , Envelhecimento , Linhagem da Célula , Células-Tronco Hematopoéticas , Linfócitos , Células Mieloides , Rejuvenescimento , Animais , Feminino , Masculino , Camundongos , Imunidade Adaptativa/imunologia , Envelhecimento/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Inflamação/imunologia , Inflamação/patologia , Linfócitos/citologia , Linfócitos/imunologia , Linfopoese , Células Mieloides/citologia , Células Mieloides/imunologia , Mielopoese , Fenótipo , Linfócitos T/citologia , Linfócitos T/imunologia , Vírus/imunologia
2.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37427590

RESUMO

Antiviral immunity often requires CD8+ cytotoxic T lymphocytes (CTLs) that actively migrate and search for virus-infected targets. Regulatory T cells (Tregs) have been shown to suppress CTL responses, but it is not known whether this is also mediated by effects on CTL motility. Here, we used intravital 2-photon microscopy in the Friend retrovirus (FV) mouse model to define the impact of Tregs on CTL motility throughout the course of acute infection. Virus-specific CTLs were very motile and had frequent short contacts with target cells at their peak cytotoxic activity. However, when Tregs were activated and expanded in late-acute FV infection, CTLs became significantly less motile and contacts with target cells were prolonged. This phenotype was associated with development of functional CTL exhaustion. Tregs had direct contacts with CTLs in vivo and, importantly, their experimental depletion restored CTL motility. Our findings identify an effect of Tregs on CTL motility as part of their mechanism of functional impairment in chronic viral infections. Future studies must address the underlying molecular mechanisms.


Assuntos
Infecções por Retroviridae , Linfócitos T Citotóxicos , Camundongos , Animais , Linfócitos T Reguladores , Retroviridae , Linfócitos T CD8-Positivos
3.
mBio ; 13(5): e0189122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36073812

RESUMO

HIV infects long-lived CD4 memory T cells, establishing a latent viral reservoir that necessitates lifelong antiretroviral therapy (ART). How this reservoir is formed so quickly after infection remains unclear. We now show the innate inflammatory response to HIV infection results in CCL2 chemokine release, leading to recruitment of cells expressing the CCR2 receptor, including a subset of central memory CD4 T cells. Supporting a role for the CCL2/CCR2 axis in rapid reservoir formation, we find (i) treatment of humanized mice with anti-CCL2 antibodies during early HIV infection decreases reservoir seeding and preserves CCR2/5+ cells and (ii) CCR2/5+ cells from the blood of HIV-infected individuals on long-term ART contain significantly more integrated provirus than CCR2/5-negative memory or naive cells. Together, these studies support a model where the host's innate inflammatory response to HIV infection, including CCL2 production, leads to the recruitment of CCR2/5+ central memory CD4 T cells to zones of virus-associated inflammation, likely contributing to rapid formation of the latent HIV reservoir. IMPORTANCE There are currently over 35 million people living with HIV worldwide, and we still have no vaccine or scalable cure. One of the difficulties with HIV is its ability to rapidly establish a viral reservoir in lymphoid tissues that allows it to elude antivirals and the immune system. Thus, it is important to understand how HIV accomplishes this so we can develop preventive strategies. Our current results show that an early inflammatory response to HIV infection includes production of the chemokine CCL2, which recruits a unique subset of CCR2/5+ CD4+ T cells that become infected and form a significant reservoir for latent infection. Furthermore, we show that blockade of CCL2 in humanized mice significantly reduces persistent HIV infection. This information is relevant to the development of therapeutics to prevent and/or treat chronic HIV infections.


Assuntos
Infecções por HIV , HIV-1 , Animais , Camundongos , Latência Viral/fisiologia , HIV-1/fisiologia , Quimiocina CCL2 , Receptores CCR2 , Replicação Viral , Linfócitos T CD4-Positivos , Antivirais/uso terapêutico , Quimiocinas , Inflamação
4.
Proc Natl Acad Sci U S A ; 119(32): e2203760119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35867811

RESUMO

The emergence of SARS-CoV-2 variants with enhanced transmissibility, pathogenesis, and resistance to vaccines presents urgent challenges for curbing the COVID-19 pandemic. While Spike mutations that enhance virus infectivity or neutralizing antibody evasion may drive the emergence of these novel variants, studies documenting a critical role for interferon responses in the early control of SARS-CoV-2 infection, combined with the presence of viral genes that limit these responses, suggest that interferons may also influence SARS-CoV-2 evolution. Here, we compared the potency of 17 different human interferons against multiple viral lineages sampled during the course of the global outbreak, including ancestral and five major variants of concern that include the B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), B.1.617.2 (delta), and B.1.1.529 (omicron) lineages. Our data reveal that relative to ancestral isolates, SARS-CoV-2 variants of concern exhibited increased interferon resistance, suggesting that evasion of innate immunity may be a significant, ongoing driving force for SARS-CoV-2 evolution. These findings have implications for the increased transmissibility and/or lethality of emerging variants and highlight the interferon subtypes that may be most successful in the treatment of early infections.


Assuntos
Antivirais , COVID-19 , Interferons , SARS-CoV-2 , Anticorpos Neutralizantes , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/transmissão , Humanos , Interferons/farmacologia , Interferons/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética
5.
PLoS Pathog ; 18(4): e1010155, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35404959

RESUMO

Macaques are a commonly used model for studying immunity to human viruses, including for studies of SARS-CoV-2 infection and vaccination. However, it is unknown whether macaque antibody responses resemble the response in humans. To answer this question, we employed a phage-based deep mutational scanning approach (Phage-DMS) to compare which linear epitopes are targeted on the SARS-CoV-2 Spike protein in convalescent humans, convalescent (re-infected) rhesus macaques, mRNA-vaccinated humans, and repRNA-vaccinated pigtail macaques. We also used Phage-DMS to determine antibody escape pathways within each epitope, enabling a granular comparison of antibody binding specificities at the locus level. Overall, we identified some common epitope targets in both macaques and humans, including in the fusion peptide (FP) and stem helix-heptad repeat 2 (SH-H) regions. Differences between groups included a response to epitopes in the N-terminal domain (NTD) and C-terminal domain (CTD) in vaccinated humans but not vaccinated macaques, as well as recognition of a CTD epitope and epitopes flanking the FP in convalescent macaques but not convalescent humans. There was also considerable variability in the escape pathways among individuals within each group. Sera from convalescent macaques showed the least variability in escape overall and converged on a common response with vaccinated humans in the SH-H epitope region, suggesting highly similar antibodies were elicited. Collectively, these findings suggest that the antibody response to SARS-CoV-2 in macaques shares many features with humans, but with substantial differences in the recognition of certain epitopes and considerable individual variability in antibody escape profiles, suggesting a diverse repertoire of antibodies that can respond to major epitopes in both humans and macaques. Differences in macaque species and exposure type may also contribute to these findings.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Epitopos , Humanos , Macaca mulatta , Glicoproteína da Espícula de Coronavírus , Vacinação
6.
J Immunol ; 208(6): 1371-1377, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35236754

RESUMO

CD47 is an important innate immune checkpoint through its interaction with its inhibitory receptor on macrophages, signal-regulatory protein α (SIRPα). Therapeutic blockade of CD47-SIRPα interactions is a promising immuno-oncology treatment that promotes clearance of cancer cells. However, CD47-SIRPα interactions also maintain homeostatic lymphocyte levels. In this study, we report that the mouse splenic marginal zone B cell population is dependent on intact CD47-SIRPα interactions and blockade of CD47 leads to the loss of these cells. This depletion is accompanied by elevated levels of monocyte-recruiting chemokines CCL2 and CCL7 and infiltration of CCR2+Ly6Chi monocytes into the mouse spleen. In the absence of CCR2 signaling, there is no infiltration and reduced marginal zone B cell depletion. These data suggest that CD47 blockade leads to clearance of splenic marginal zone B cells.


Assuntos
Antígeno CD47 , Monócitos , Animais , Antígenos de Diferenciação , Quimiocinas , Camundongos , Monócitos/metabolismo , Fagocitose , Receptores Imunológicos
7.
Antiviral Res ; 197: 105226, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923028

RESUMO

It has been shown that a very early cell-intrinsic response to infection is the upregulation of CD47 cell surface expression, a molecule known for delivering a "don't eat me signal" that inhibits macrophage-mediated phagocytosis and antigen presentation. Thus, blockade of CD47 signaling during lymphocytic choriomenigitis virus infections of mice has been shown to enhance the kinetics and potency of immune responses, thereby producing faster recovery. It seems counterintuitive that one of the earliest responses to infection would be immunoinhibitory, but it has been hypothesized that CD47 induction acts as an innate immune system checkpoint to prevent immune overactivation and immunopathogenic responses during certain infections. In the current study we examined the effect of CD47 blockade on lethal Ebola virus infection of mice. At 6 days post-infection, CD47 blockade was associated with significantly increased activation of B cells along with increases in recently cytolytic CD8+ T cells. However, the anti-CD47-treated mice exhibited increased weight loss, higher virus titers, and succumbed more rapidly. The anti-CD47-treated mice also had increased inflammatory cytokines in the plasma indicative of a "cytokine storm". Thus, in the context of this rapid hemorrhagic disease, CD47 blockade indeed exacerbated immunopathology and disease severity.


Assuntos
Antígeno CD47/genética , Antígeno CD47/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Animais , Citocinas/sangue , Citocinas/imunologia , Ebolavirus/patogenicidade , Feminino , Doença pelo Vírus Ebola/patologia , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Células RAW 264.7 , Índice de Gravidade de Doença , Transdução de Sinais
8.
bioRxiv ; 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34909774

RESUMO

Macaques are a commonly used model for studying immunity to human viruses, including for studies of SARS-CoV-2 infection and vaccination. However, it is unknown whether macaque antibody responses recapitulate, and thus appropriately model, the response in humans. To answer this question, we employed a phage-based deep mutational scanning approach (Phage-DMS) to compare which linear epitopes are targeted on the SARS-CoV-2 Spike protein in humans and macaques following either vaccination or infection. We also used Phage-DMS to determine antibody escape pathways within each epitope, enabling a granular comparison of antibody binding specificities at the locus level. Overall, we identified some common epitope targets in both macaques and humans, including in the fusion peptide (FP) and stem helix-heptad repeat 2 (SH-H) regions. Differences between groups included a response to epitopes in the N-terminal domain (NTD) and C-terminal domain (CTD) in vaccinated humans but not vaccinated macaques, as well as recognition of a CTD epitope and epitopes flanking the FP in convalescent macaques but not convalescent humans. There was also considerable variability in the escape pathways among individuals within each group. Sera from convalescent macaques showed the least variability in escape overall and converged on a common response with vaccinated humans in the SH-H epitope region, suggesting highly similar antibodies were elicited. Collectively, these findings suggest that the antibody response to SARS-CoV-2 in macaques shares many features with humans, but with substantial differences in the recognition of certain epitopes and considerable individual variability in antibody escape profiles, suggesting a diverse repertoire of antibodies that can respond to major epitopes in both humans and macaques.

9.
mBio ; 12(4): e0150321, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34311582

RESUMO

Severe coronavirus disease 2019 (COVID-19) has been associated with T cell lymphopenia, but no causal effect of T cell deficiency on disease severity has been established. To investigate the specific role of T cells in recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, we studied rhesus macaques that were depleted of either CD4+, CD8+, or both T cell subsets prior to infection. Peak virus loads were similar in all groups, but the resolution of virus in the T cell-depleted animals was slightly delayed compared to that in controls. The T cell-depleted groups developed virus-neutralizing antibody responses and class switched to IgG. When reinfected 6 weeks later, the T cell-depleted animals showed anamnestic immune responses characterized by rapid induction of high-titer virus-neutralizing antibodies, faster control of virus loads, and reduced clinical signs. These results indicate that while T cells play a role in the recovery of rhesus macaques from acute SARS-CoV-2 infections, their depletion does not induce severe disease, and T cells do not account for the natural resistance of rhesus macaques to severe COVID-19. Neither primed CD4+ nor CD8+ T cells appeared critical for immunoglobulin class switching, the development of immunological memory, or protection from a second infection. IMPORTANCE Patients with severe COVID-19 often have decreased numbers of T cells, a cell type important in fighting most viral infections. However, it is not known whether the loss of T cells contributes to severe COVID-19 or is a consequence of it. We studied rhesus macaques, which develop only mild COVID-19, similar to most humans. Experimental depletion of T cells slightly prolonged their clearance of virus, but there was no increase in disease severity. Furthermore, they were able to develop protection from a second infection and produced antibodies capable of neutralizing the virus. They also developed immunological memory, which allows a much stronger and more rapid response upon a second infection. These results suggest that T cells are not critical for recovery from acute SARS-CoV-2 infections in this model and point toward B cell responses and antibodies as the essential mediators of protection from re-exposure.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/patologia , Memória Imunológica/imunologia , Linfopenia/imunologia , SARS-CoV-2/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Feminino , Depleção Linfocítica/métodos , Macaca mulatta/imunologia , Masculino
10.
bioRxiv ; 2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33821272

RESUMO

Severe COVID-19 has been associated with T cell lymphopenia 1,2, but no causal effect of T cell deficiency on disease severity has been established. To investigate the specific role of T cells in recovery from SARS-CoV-2 infections we studied rhesus macaques that were depleted of either CD4+, CD8+ or both T cell subsets prior to infection. Peak virus loads were similar in all groups, but the resolution of virus in the T cell-depleted animals was slightly delayed compared to controls. The T cell-depleted groups developed virus-neutralizing antibody responses and also class-switched to IgG. When re-infected six weeks later, the T cell-depleted animals showed anamnestic immune responses characterized by rapid induction of high-titer virus-neutralizing antibodies, faster control of virus loads and reduced clinical signs. These results indicate that while T cells play a role in the recovery of rhesus macaques from acute SARS-CoV-2 infections, their depletion does not induce severe disease, and T cells do not account for the natural resistance of rhesus macaques to severe COVID-19. Neither primed CD4+ or CD8+ T cells appeared critical for immunoglobulin class switching, the development of immunological memory or protection from a second infection.

11.
bioRxiv ; 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33758840

RESUMO

The emergence of SARS-CoV-2 variants with enhanced transmissibility, pathogenesis and resistance to vaccines presents urgent challenges for curbing the COVID-19 pandemic. While Spike mutations that enhance virus infectivity or neutralizing antibody evasion may drive the emergence of these novel variants, studies documenting a critical role for interferon responses in the early control of SARS-CoV-2 infection, combined with the presence of viral genes that limit these responses, suggest that interferons may also influence SARS-CoV-2 evolution. Here, we compared the potency of 17 different human interferons against multiple viral lineages sampled during the course of the global outbreak, including ancestral and four major variants of concern. Our data reveal increased interferon resistance in emerging SARS-CoV-2 variants, suggesting that evasion of innate immunity may be a significant, ongoing driving force for SARS-CoV-2 evolution. These findings have implications for the increased lethality of emerging variants and highlight the interferon subtypes that may be most successful in the treatment of early infections.

12.
J Mol Biol ; 433(1): 166583, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32598936

RESUMO

B lymphocytes have well-established effector roles during viral infections, including production of antibodies and functioning as antigen-presenting cells for CD4+ and CD8+ T cells. B cells have also been shown to regulate immune responses and induce regulatory T cells (Tregs). In the Friend virus (FV) model, Tregs are known to inhibit effector CD8+ T-cell responses and contribute to virus persistence. Recent work has uncovered a role for B cells in the induction and activation of Tregs during FV infection. In addition to inducing Tregs, B cell antibody production and antigen-presenting cell activity is a target of Treg suppression. This review focuses on the dynamic interactions between B cells and Tregs during FV infection.


Assuntos
Linfócitos B/imunologia , Vírus da Leucemia Murina de Friend/imunologia , Interações Hospedeiro-Patógeno/imunologia , Infecções por Retroviridae/veterinária , Doenças dos Roedores/imunologia , Doenças dos Roedores/virologia , Linfócitos T Reguladores/imunologia , Animais , Formação de Anticorpos/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Linfócitos B/metabolismo , Comunicação Celular/imunologia , Doenças dos Roedores/metabolismo , Linfócitos T Reguladores/metabolismo
13.
PLoS Pathog ; 16(10): e1008986, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33064743

RESUMO

The Type I Interferons (IFN-Is) are innate antiviral cytokines that include 12 different IFNα subtypes and IFNß that signal through the IFN-I receptor (IFNAR), inducing hundreds of IFN-stimulated genes (ISGs) that comprise the 'interferome'. Quantitative differences in IFNAR binding correlate with antiviral activity, but whether IFN-Is exhibit qualitative differences remains controversial. Moreover, the IFN-I response is protective during acute HIV-1 infection, but likely pathogenic during the chronic stages. To gain a deeper understanding of the IFN-I response, we compared the interferomes of IFNα subtypes dominantly-expressed in HIV-1-exposed plasmacytoid dendritic cells (1, 2, 5, 8 and 14) and IFNß in the earliest cellular targets of HIV-1 infection. Primary gut CD4 T cells from 3 donors were treated for 18 hours ex vivo with individual IFN-Is normalized for IFNAR signaling strength. Of 1,969 IFN-regulated genes, 246 'core ISGs' were induced by all IFN-Is tested. However, many IFN-regulated genes were not shared between the IFNα subtypes despite similar induction of canonical antiviral ISGs such as ISG15, RSAD2 and MX1, formally demonstrating qualitative differences between the IFNα subtypes. Notably, IFNß induced a broader interferome than the individual IFNα subtypes. Since IFNß, and not IFNα, is upregulated during chronic HIV-1 infection in the gut, we compared core ISGs and IFNß-specific ISGs from colon pinch biopsies of HIV-1-uninfected (n = 13) versus age- and gender-matched, antiretroviral-therapy naïve persons with HIV-1 (PWH; n = 19). Core ISGs linked to inflammation, T cell activation and immune exhaustion were elevated in PWH, positively correlated with plasma lipopolysaccharide (LPS) levels and gut IFNß levels, and negatively correlated with gut CD4 T cell frequencies. In sharp contrast, IFNß-specific ISGs linked to protein translation and anti-inflammatory responses were significantly downregulated in PWH, negatively correlated with gut IFNß and LPS, and positively correlated with plasma IL6 and gut CD4 T cell frequencies. Our findings reveal qualitative differences in interferome induction by diverse IFN-Is and suggest potential mechanisms for how IFNß may drive HIV-1 pathogenesis in the gut.


Assuntos
Antivirais/farmacologia , Células Dendríticas/patologia , Trato Gastrointestinal/patologia , Infecções por HIV/patologia , HIV-1/efeitos dos fármacos , Interferon-alfa/farmacologia , Interferon beta/farmacologia , Adulto , Estudos de Casos e Controles , Células Dendríticas/efeitos dos fármacos , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Perfilação da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Interferon-alfa/classificação , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
mBio ; 11(3)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576678

RESUMO

It is well understood that the adaptive immune response to infectious agents includes a modulating suppressive component as well as an activating component. We now show that the very early innate response also has an immunosuppressive component. Infected cells upregulate the CD47 "don't eat me" signal, which slows the phagocytic uptake of dying and viable cells as well as downstream antigen-presenting cell (APC) functions. A CD47 mimic that acts as an essential virulence factor is encoded by all poxviruses, but CD47 expression on infected cells was found to be upregulated even by pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that encode no mimic. CD47 upregulation was revealed to be a host response induced by the stimulation of both endosomal and cytosolic pathogen recognition receptors (PRRs). Furthermore, proinflammatory cytokines, including those found in the plasma of hepatitis C patients, upregulated CD47 on uninfected dendritic cells, thereby linking innate modulation with downstream adaptive immune responses. Indeed, results from antibody-mediated CD47 blockade experiments as well as CD47 knockout mice revealed an immunosuppressive role for CD47 during infections with lymphocytic choriomeningitis virus and Mycobacterium tuberculosis Since CD47 blockade operates at the level of pattern recognition receptors rather than at a pathogen or antigen-specific level, these findings identify CD47 as a novel potential immunotherapeutic target for the enhancement of immune responses to a broad range of infectious agents.IMPORTANCE Immune responses to infectious agents are initiated when a pathogen or its components bind to pattern recognition receptors (PRRs). PRR binding sets off a cascade of events that activates immune responses. We now show that, in addition to activating immune responses, PRR signaling also initiates an immunosuppressive response, probably to limit inflammation. The importance of the current findings is that blockade of immunomodulatory signaling, which is mediated by the upregulation of the CD47 molecule, can lead to enhanced immune responses to any pathogen that triggers PRR signaling. Since most or all pathogens trigger PRRs, CD47 blockade could be used to speed up and strengthen both innate and adaptive immune responses when medically indicated. Such immunotherapy could be done without a requirement for knowing the HLA type of the individual, the specific antigens of the pathogen, or, in the case of bacterial infections, the antimicrobial resistance profile.


Assuntos
Betacoronavirus/imunologia , Antígeno CD47/metabolismo , Imunomodulação/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Células A549 , Imunidade Adaptativa/imunologia , Animais , Antígeno CD47/genética , Linhagem Celular Tumoral , Citocinas/imunologia , Feminino , Humanos , Imunidade Inata/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , SARS-CoV-2 , Regulação para Cima/imunologia
15.
Cell Rep ; 31(2): 107494, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294445

RESUMO

Paradoxically, early host responses to infection include the upregulation of the antiphagocytic molecule, CD47. This suggests that CD47 blockade could enhance antigen presentation and subsequent immune responses. Indeed, mice treated with anti-CD47 monoclonal antibody following lymphocytic choriomeningitis virus infections show increased activation of both macrophages and dendritic cells (DCs), enhancement of the kinetics and potency of CD8+ T cell responses, and significantly improved virus control. Treatment efficacy is critically dependent on both APCs and CD8+ T cells. In preliminary results from one of two cohorts of humanized mice infected with HIV-1 for 6 weeks, CD47 blockade reduces plasma p24 levels and restores CD4+ T cell counts. The results indicate that CD47 blockade not only enhances the function of innate immune cells but also links to adaptive immune responses through improved APC function. As such, immunotherapy by CD47 blockade may have broad applicability to treat a wide range of infectious diseases.


Assuntos
Antígeno CD47/imunologia , Antígeno CD47/metabolismo , Viroses/imunologia , Imunidade Adaptativa/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Feminino , Células HEK293 , Humanos , Imunidade Inata/imunologia , Imunoterapia/métodos , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
16.
Sci Rep ; 9(1): 18089, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792317

RESUMO

Combination antiretroviral therapy (cART) prevents HIV-1 replication but does not eliminate the latent reservoir and cure the infection. Type I interferons (IFN) mediate antiviral effects through different mechanisms than cART. We previously showed that IFNα14 is the most potent IFNα subtype against HIV-1 and that it can significantly reduce the HIV-1 proviral reservoir. This study sought to determine whether combining cART with IFNα14 therapy would produce greater reductions in HIV-1 viral and proviral loads than ART alone. Immunodeficient Rag2-/-γc-/-CD47-/- C57BL/6 mice were humanized by the BLT method, infected with HIV-1JR-CSF and the in vivo efficacy of cART was compared with combined cART/IFNα14 therapy. Infection was allowed to establish for 6 weeks prior to 4 weeks of treatment with oral cART either with or without IFNα14. Plasma viral RNA and splenic CD4+ T cell viral DNA levels were measured immediately after treatment and after 2 weeks of therapy interruption. Augmentation of cART with IFNα14 resulted in significantly enhanced suppression of HIV-1 plasma viremia. However, no significant reduction in total viral DNA was detectable. Furthermore, virus rebounded after treatment interruption to similar levels in both groups. Thus, augmentation of cART with IFNα14 resulted in a more pronounced reduction of HIV viremia levels over cART alone, but the effect was not potent enough to be detected at the viral DNA level or to prevent virus rebound following therapy interruption in immune system-humanized mice.


Assuntos
Antirretrovirais/uso terapêutico , Antivirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Interferon-alfa/uso terapêutico , Viremia/tratamento farmacológico , Animais , Antirretrovirais/administração & dosagem , Antivirais/administração & dosagem , Quimioterapia Combinada , Feminino , Infecções por HIV/virologia , Humanos , Interferon-alfa/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Carga Viral/efeitos dos fármacos , Viremia/virologia
18.
FEMS Microbiol Rev ; 43(5): 435-456, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087035

RESUMO

Approximately 4.4% of the human genome is comprised of endogenous retroviral sequences, a record of an evolutionary battle between man and retroviruses. Much of what we know about viral immunity comes from studies using mouse models. Experiments using the Friend virus (FV) model have been particularly informative in defining highly complex anti-retroviral mechanisms of the intrinsic, innate and adaptive arms of immunity. FV studies have unraveled fundamental principles about how the immune system controls both acute and chronic viral infections. They led to a more complete understanding of retroviral immunity that begins with cellular sensing, production of type I interferons, and the induction of intrinsic restriction factors. Novel mechanisms have been revealed, which demonstrate that these earliest responses affect not only virus replication, but also subsequent innate and adaptive immunity. This review on FV immunity not only surveys the complex host responses to a retroviral infection from acute infection to chronicity, but also highlights the many feedback mechanisms that regulate and counter-regulate the various arms of the immune system. In addition, the discovery of molecular mechanisms of immunity in this model have led to therapeutic interventions with implications for HIV cure and vaccine development.


Assuntos
Imunidade Adaptativa , Vírus da Leucemia Murina de Friend/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Imunidade Inata , Infecções por Retroviridae/imunologia , Animais , Antirretrovirais/uso terapêutico , Humanos , Imunoterapia , Camundongos , Infecções por Retroviridae/tratamento farmacológico , Infecções por Retroviridae/terapia
19.
Nat Commun ; 10(1): 794, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770827

RESUMO

Prolonged exposure of CD8+ T cells to antigenic stimulation, as in chronic viral infections, leads to a state of diminished function termed exhaustion. We now demonstrate that even during exhaustion there is a subset of functional CD8+ T cells defined by surface expression of SIRPα, a protein not previously reported on lymphocytes. On SIRPα+ CD8+ T cells, expression of co-inhibitory receptors is counterbalanced by expression of co-stimulatory receptors and it is only SIRPα+ cells that actively proliferate, transcribe IFNγ and show cytolytic activity. Furthermore, target cells that express the ligand for SIRPα, CD47, are more susceptible to CD8+ T cell-killing in vivo. SIRPα+ CD8+ T cells are evident in mice infected with Friend retrovirus, LCMV Clone 13, and in patients with chronic HCV infections. Furthermore, therapeutic blockade of PD-L1 to reinvigorate CD8+ T cells during chronic infection expands the cytotoxic subset of SIRPα+ CD8+ T cells.


Assuntos
Infecções por Arenaviridae/imunologia , Linfócitos T CD8-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Receptores Imunológicos/imunologia , Animais , Infecções por Arenaviridae/genética , Infecções por Arenaviridae/virologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Feminino , Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/virologia
20.
mBio ; 10(1)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670616

RESUMO

Friend virus (FV) is a naturally occurring mouse retrovirus that infects dividing cells of the hematopoietic lineage, including antigen-presenting cells (APCs). The infection of APCs by viruses often induces their dysfunction, and it has been shown that FV infection reduces the ability of dendritic cells (DCs) to prime critical CD8+ T cell responses. Nonetheless, mice mount vigorous CD8+ T cell responses, so we investigated whether B cells might serve as alternative APCs during FV infection. Direct ex vivo analysis of B cells from FV-infected mice revealed that infected but not uninfected B cells upregulated expression of the costimulatory molecules CD80, CD86, and CD40, as well as major histocompatibility complex class II (MHC-II) molecules. Furthermore, in vitro studies showed that, compared to uninfected B cells from the same mice, the FV-infected B cells had significantly enhanced APC function, as measured by their capacity to prime CD8+ T cell activation and proliferation. Thus, in contrast to DCs, infection of B cells with FV enhanced their APC capacity and ability to stimulate the CD8+ T cell responses essential for virus control. FV infections also induce the activation and expansion of regulatory T cells (Tregs), so it was of interest to determine the impact of Tregs on B cell activation. The upregulation of costimulatory molecule expression and APC function of B cells was even more strongly enhanced by in vivo depletion of regulatory T cells than infection. Thus, Tregs exert potent homeostatic suppression of B cell activation that is partially overcome by FV infection.IMPORTANCE The primary role of B cells in immunity is considered the production of pathogen-specific antibodies, but another, less-well-studied, function of B cells is to present foreign antigens to T cells to stimulate their activation and proliferation. Dendritic cells (DCs) are considered the most important antigen-presenting cells (APCs) for CD8+ T cells, but DCs lose APC function when infected with Friend virus (FV), a model retrovirus of mice. Interestingly, B cells were better able to stimulate CD8+ T cell responses when they were infected with FV. We also found that the activation status of B cells under homeostatic conditions was potently modulated by regulatory T cells. This study illustrates an important link between B cell and T cell responses and illustrates an additional mechanism by which regulatory T cells suppress critical T cell responses during viral infections.


Assuntos
Apresentação de Antígeno , Linfócitos B/imunologia , Vírus da Leucemia Murina de Friend/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos B/química , Antígeno B7-1/análise , Antígeno B7-2/análise , Antígenos CD40/análise , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Antígenos de Histocompatibilidade Classe II/análise , Leucemia Experimental/imunologia , Leucemia Experimental/virologia , Ativação Linfocitária , Camundongos , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA