Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 241: 124597, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37116837

RESUMO

Cr(VI) pollution has seriously affected the survival of biological organisms and humans, so reducing the harm of Cr(VI) pollution is a significant scientific goal. Natural starch exhibits a low adsorption capacity for Cr(VI); thus, physical or chemical modification is needed to improve the adsorption and regeneration performance of starch. In this study, a novel starch-based porous carbon (SPC) was prepared to remove Cr(VI) from water by using soluble starch as a raw material. The characterization results show that the SPC shows a ratio surface area of 1325.39 m2/g. Kinetics suggest that the adsorption of Cr(VI) on SPC is dominated by chemisorption. The isotherm data demonstrated that the adsorption of Cr(VI) by SPC adhered to the Freundlich model. SPC exhibits a multimolecular layer adsorption structure, and the highest amount of adsorbed Cr(VI) in SPC was 777.89 mg/g (25 °C). Ion competition experiments show that SPC exhibits significant selectivity for Cr(VI) adsorption. In addition, the adsorption cycle experiment shows that SPC maintains a 63 % removal rate after 7 cycles. In this study, starch was transformed into high-quality adsorbent materials by hydrothermal and activation strategies, offering a new innovation for the optimization of starch-based adsorbents.


Assuntos
Carbono , Poluentes Químicos da Água , Humanos , Água , Porosidade , Poluentes Químicos da Água/química , Cromo/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio
2.
Int J Biol Macromol ; 234: 123689, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801292

RESUMO

In this study, an adsorbent with mesoporous structure and PO/PO bonds is prepared by hydrothermal and phosphoric acid activation from industrial alkali lignin for the adsorption of oxytetracycline (OTC). The adsorption capacity is 598 mg/g, which is three times higher than that of the adsorbent with microporous structure. The rich mesoporous structure of the adsorbent provides adsorption channels and filling sites, and π-π attraction, cation-π interaction, hydrogen bonds, and electrostatic attraction provide adsorption forces at the adsorption sites. The removal rate of OTC exceeds 98 % over a wide range of pH values (3-10). It has high selectivity for competing cations in water, with higher than 86.7 % removal rate of OTC from medical wastewater. After 7 consecutive adsorption-desorption cycles, the removal rate of OTC remains as high as 91 %. This efficient removal rate and excellent reusability indicate the strong potential of the adsorbent for industrial applications. This study prepares a highly efficient, environmentally friendly antibiotic adsorbent that can not only efficiently remove antibiotics from water but also recycle industrial alkali lignin waste.


Assuntos
Oxitetraciclina , Poluentes Químicos da Água , Oxitetraciclina/química , Lignina , Carbono , Adsorção , Antibacterianos/química , Água , Poluentes Químicos da Água/química , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA