Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(7): 104604, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35789858

RESUMO

SLITRK2 encodes a transmembrane protein that modulates neurite outgrowth and synaptic activities and is implicated in bipolar disorder. Here, we addressed its physiological roles in mice. In the brain, the Slitrk2 protein was strongly detected in the hippocampus, vestibulocerebellum, and precerebellar nuclei-the vestibular-cerebellar-brainstem neural network including pontine gray and tegmental reticular nucleus. Slitrk2 knockout (KO) mice exhibited increased locomotor activity in novel environments, antidepressant-like behaviors, enhanced vestibular function, and increased plasticity at mossy fiber-CA3 synapses with reduced sensitivity to serotonin. A serotonin metabolite was increased in the hippocampus and amygdala, and serotonergic neurons in the raphe nuclei were decreased in Slitrk2 KO mice. When KO mice were treated with methylphenidate, lithium, or fluoxetine, the mood stabilizer lithium showed a genotype-dependent effect. Taken together, Slitrk2 deficiency causes aberrant neural network activity, synaptic integrity, vestibular function, and serotonergic function, providing molecular-neurophysiological insight into the brain dysregulation in bipolar disorders.

3.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903237

RESUMO

Precise spatiotemporal control of gene expression in the developing brain is critical for neural circuit formation, and comprehensive expression mapping in the developing primate brain is crucial to understand brain function in health and disease. Here, we developed an unbiased, automated, large-scale, cellular-resolution in situ hybridization (ISH)-based gene expression profiling system (GePS) and companion analysis to reveal gene expression patterns in the neonatal New World marmoset cortex, thalamus, and striatum that are distinct from those in mice. Gene-ontology analysis of marmoset-specific genes revealed associations with catalytic activity in the visual cortex and neuropsychiatric disorders in the thalamus. Cortically expressed genes with clear area boundaries were used in a three-dimensional cortical surface mapping algorithm to delineate higher-order cortical areas not evident in two-dimensional ISH data. GePS provides a powerful platform to elucidate the molecular mechanisms underlying primate neurobiology and developmental psychiatric and neurological disorders.


Assuntos
Encéfalo/metabolismo , Callithrix/genética , Transcriptoma/genética , Animais , Animais Recém-Nascidos/genética , Animais Recém-Nascidos/crescimento & desenvolvimento , Encéfalo/crescimento & desenvolvimento , Callithrix/crescimento & desenvolvimento , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Hibridização In Situ , Camundongos , Especificidade da Espécie , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/metabolismo
4.
J Med Virol ; 92(7): 707-709, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32246783

RESUMO

In a recent review, we have suggested a neuroinvasive potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its possible role in the causation of acute respiratory failure of coronavirus disease 2019 (COVID-19) patients (J Med Viol doi: 10.1002/jmv.25728), based upon the clinical and experimental data available on the past SARS-CoV-1 and the recent SARS-CoV-2 pandemic. In this article, we provide new evidence recently reported regarding the neurotropic potential of SARS-CoV-2 and respond to several comments on our previously published article. In addition, we also discuss the peculiar manifestations of respiratory failure in COVID-19 patients and the possible involvement of nervous system.


Assuntos
Coronavirus , Insuficiência Respiratória , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Betacoronavirus , COVID-19 , Infecções por Coronavirus , Humanos , Pandemias , Pneumonia Viral , SARS-CoV-2
5.
J Med Virol ; 92(6): 552-555, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32104915

RESUMO

Following the severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), another highly pathogenic coronavirus named SARS-CoV-2 (previously known as 2019-nCoV) emerged in December 2019 in Wuhan, China, and rapidly spreads around the world. This virus shares highly homological sequence with SARS-CoV, and causes acute, highly lethal pneumonia coronavirus disease 2019 (COVID-19) with clinical symptoms similar to those reported for SARS-CoV and MERS-CoV. The most characteristic symptom of patients with COVID-19 is respiratory distress, and most of the patients admitted to the intensive care could not breathe spontaneously. Additionally, some patients with COVID-19 also showed neurologic signs, such as headache, nausea, and vomiting. Increasing evidence shows that coronaviruses are not always confined to the respiratory tract and that they may also invade the central nervous system inducing neurological diseases. The infection of SARS-CoV has been reported in the brains from both patients and experimental animals, where the brainstem was heavily infected. Furthermore, some coronaviruses have been demonstrated able to spread via a synapse-connected route to the medullary cardiorespiratory center from the mechanoreceptors and chemoreceptors in the lung and lower respiratory airways. Considering the high similarity between SARS-CoV and SARS-CoV2, it remains to make clear whether the potential invasion of SARS-CoV2 is partially responsible for the acute respiratory failure of patients with COVID-19. Awareness of this may have a guiding significance for the prevention and treatment of the SARS-CoV-2-induced respiratory failure.


Assuntos
Betacoronavirus/patogenicidade , Sistema Nervoso Central/virologia , Infecções por Coronavirus/epidemiologia , Cefaleia/virologia , Pandemias , Pneumonia Viral/epidemiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Betacoronavirus/fisiologia , COVID-19 , Sistema Nervoso Central/fisiopatologia , China/epidemiologia , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Cefaleia/diagnóstico , Cefaleia/fisiopatologia , Humanos , Pulmão/fisiopatologia , Pulmão/virologia , Mecanotransdução Celular , Náusea/diagnóstico , Náusea/fisiopatologia , Náusea/virologia , Pneumonia Viral/fisiopatologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/fisiopatologia , Insuficiência Respiratória/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/fisiopatologia , Síndrome Respiratória Aguda Grave/transmissão , Síndrome Respiratória Aguda Grave/virologia , Vômito/diagnóstico , Vômito/fisiopatologia , Vômito/virologia
6.
Neurosci Lett ; 677: 65-71, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29689341

RESUMO

Hippocampal mossy fibers (MFs) project from dentate gyrus granule cells onto the CA2-CA3 region. MF-mediated synaptic transmission plays an important role in hippocampal learning and memory. However, the molecular mechanisms underlying MF synaptic development and subsequent functional organization are not fully understood. We previously reported that calcium-dependent activator protein for secretion 2 (CADPS2, also known as CAPS2) regulates the secretion of dense-core vesicles (DCVs). Because CADPS2 is strongly expressed in MF terminals, we hypothesized that CADPS2 regulates the development and functional organization of MF synapses by controlling the secretion of DCVs and their contents. To test this, we compared the synaptic microstructures of hippocampal MF terminals in Cadps2 knockout (KO) mice and wild-type (WT) mice by electron microscopy (EM). On postnatal day 15 (P15), KO mice exhibited morphological abnormalities in MF boutons, including smaller bouton size, a larger number of DCVs and a smaller number of post-synaptic densities (PSDs), compared with WT mice. In adults (P56), MF boutons were larger in KO mice. Synaptic vesicles (SVs) were increased but with a lower density compared with the WT. Furthermore, the number of SVs was decreased near the active zone. Moreover, MF-innervated CA3 postsynapses in KO mice displayed aberrant structures at the postsynaptic density (PSD), with an increased number of PSDs (likely because of a larger number of perforated PSDs), compared with WT mice. Taken together, our findings suggest that CADPS2 plays a critical role in MF synaptic development and functional organization.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Fibras Musgosas Hipocampais/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/fisiologia , Sinapses/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Masculino , Camundongos Knockout , Fibras Musgosas Hipocampais/ultraestrutura , Proteínas do Tecido Nervoso/genética , Sinapses/ultraestrutura
7.
Sci Data ; 5: 180009, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29437168

RESUMO

We present a new 3D digital brain atlas of the non-human primate, common marmoset monkey (Callithrix jacchus), with MRI and coregistered Nissl histology data. To the best of our knowledge this is the first comprehensive digital 3D brain atlas of the common marmoset having normalized multi-modal data, cortical and sub-cortical segmentation, and in a common file format (NIfTI). The atlas can be registered to new data, is useful for connectomics, functional studies, simulation and as a reference. The atlas was based on previously published work but we provide several critical improvements to make this release valuable for researchers. Nissl histology images were processed to remove illumination and shape artifacts and then normalized to the MRI data. Brain region segmentation is provided for both hemispheres. The data is in the NIfTI format making it easy to integrate into neuroscience pipelines, whereas the previous atlas was in an inaccessible file format. We also provide cortical, mid-cortical and white matter boundary segmentations useful for visualization and analysis.


Assuntos
Encéfalo , Callithrix , Animais , Atlas como Assunto , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Conectoma , Imageamento por Ressonância Magnética
8.
Neurosci Res ; 128: 1-13, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29111135

RESUMO

Interest in the common marmoset (Callithrix jacchus) as a primate model animal has grown recently, in part due to the successful demonstration of transgenic marmosets. However, there is some debate as to the suitability of marmosets, compared to more widely used animal models, such as the macaque monkey and mouse. Especially, the usage of marmoset for animal models of human cognition and mental disorders, is still yet to be fully explored. To examine the prospects of the marmoset model for neuroscience research, the Marmoset Gene Atlas (https://gene-atlas.bminds.brain.riken.jp/) provides a whole brain gene expression atlas in the common marmoset. We employ in situ hybridization (ISH) to systematically analyze gene expression in neonate marmoset brains, which allows us to compare expression with other model animals such as mouse. We anticipate that these data will provide sufficient information to develop tools that enable us to reveal marmoset brain structure, function, cellular and molecular organization for primate brain research.


Assuntos
Encéfalo/metabolismo , Callithrix/genética , Cognição/efeitos dos fármacos , Expressão Gênica , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Macaca
9.
PLoS One ; 12(3): e0173175, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28264072

RESUMO

Very-KIND/Kndc1/KIAA1768 (v-KIND) is a brain-specific Ras guanine nucleotide exchange factor carrying two sets of the kinase non-catalytic C-lobe domain (KIND), and is predominantly expressed in cerebellar granule cells. Here, we report the impact of v-KIND deficiency on dendritic and synaptic growth in cerebellar granule cells in v-KIND knockout (KO) mice. Furthermore, we evaluate motor function in these animals. The gross anatomy of the cerebellum, including the cerebellar lobules, layered cerebellar cortex and densely-packed granule cell layer, in KO mice appeared normal, and was similar to wild-type (WT) mice. However, KO mice displayed an overgrowth of cerebellar granule cell dendrites, compared with WT mice, resulting in an increased number of dendrites, dendritic branches and terminals. Immunoreactivity for vGluT2 (a marker for excitatory presynapses of mossy fiber terminals) was increased in the cerebellar glomeruli of KO mice, compared with WT mice. The postsynaptic density around the terminals of mossy fibers was also increased in KO mice. Although there were no significant differences in locomotor ability between KO and WT animals in their home cages or in the open field, young adult KO mice had an increased grip strength and a tendency to exhibit better motor performance in balance-related tests compared with WT animals. Taken together, our results suggest that v-KIND is required for compact dendritic growth and proper excitatory synaptic connections in cerebellar granule cells, which are necessary for normal motor coordination and balance.


Assuntos
Encéfalo/metabolismo , Cerebelo/citologia , Cerebelo/metabolismo , Dendritos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas do Tecido Nervoso/genética , Desempenho Psicomotor , Animais , Axônios/metabolismo , Biomarcadores , Potenciais Pós-Sinápticos Excitadores , Fatores de Troca do Nucleotídeo Guanina/química , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/química , Especificidade de Órgãos/genética , Sinapses/metabolismo , Sinapses/ultraestrutura
10.
PLoS One ; 11(11): e0166732, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27855200

RESUMO

Opalin, a central nervous system-specific myelin protein phylogenetically unique to mammals, has been suggested to play a role in mammalian-specific myelin. To elucidate the role of Opalin in mammalian myelin, we disrupted the Opalin gene in mice and analyzed the impacts on myelination and behavior. Opalin-knockout (Opalin-/-) mice were born at a Mendelian ratio and had a normal body shape and weight. Interestingly, Opalin-/- mice had no obvious abnormalities in major myelin protein compositions, expression of oligodendrocyte lineage markers, or domain organization of myelinated axons compared with WT mice (Opalin+/+) mice. Electron microscopic observation of the optic nerves did not reveal obvious differences between Opalin+/+ and Opalin-/- mice in terms of fine structures of paranodal loops, transverse bands, and multi-lamellae of myelinated axons. Moreover, sensory reflex, circadian rhythm, and locomotor activity in the home cage, as well as depression-like behavior, in the Opalin-/- mice were indistinguishable from the Opalin+/+ mice. Nevertheless, a subtle but significant impact on exploratory activity became apparent in Opalin-/- mice exposed to a novel environment. These results suggest that Opalin is not critical for central nervous system myelination or basic sensory and motor activities under conventional breeding conditions, although it might be required for fine-tuning of exploratory behavior.


Assuntos
Comportamento Animal , Mamíferos/metabolismo , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Animais , Astrócitos/metabolismo , Axônios/metabolismo , Axônios/ultraestrutura , Peso Corporal , Encéfalo/metabolismo , Comunicação Celular , Diferenciação Celular , Comportamento Exploratório , Immunoblotting , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Proteínas da Mielina/deficiência , Bainha de Mielina/ultraestrutura , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Nervo Óptico/metabolismo , Nervo Óptico/ultraestrutura , Fenótipo , Especificidade da Espécie
11.
Acta Neuropathol Commun ; 3: 24, 2015 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-25907258

RESUMO

INTRODUCTION: FUS/TLS is an RNA-binding protein whose genetic mutations or pathological inclusions are associated with neurological diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration, and essential tremor (ET). It is unclear whether their pathogenesis is mediated by gain or loss of function of FUS/TLS. RESULTS: Here, we established outbred FUS/TLS knockout mice to clarify the effects of FUS/TLS dysfunction in vivo. We obtained homozygous knockout mice that grew into adulthood. Importantly, they did not manifest ALS- or ET-like phenotypes until nearly two years. Instead, they showed distinct histological and behavioral alterations including vacuolation in hippocampus, hyperactivity, and reduction in anxiety-like behavior. Knockout mice showed transcriptome alterations including upregulation of Taf15 and Hnrnpa1, while they have normal morphology of RNA-related granules such as Gems. CONCLUSIONS: Collectively, FUS/TLS depletion causes phenotypes possibly related to neuropsychiatric and neurodegenerative conditions, but distinct from ALS and ET, together with specific alterations in RNA metabolisms.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Ansiedade/psicologia , Comportamento Animal , Proteína FUS de Ligação a RNA/genética , Proteínas de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Tremor Essencial/genética , Tremor Essencial/fisiopatologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Homozigoto , Hipercinese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteína FUS de Ligação a RNA/deficiência , Fatores Associados à Proteína de Ligação a TATA/genética , Regulação para Cima
12.
Neurosci Res ; 93: 116-27, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25817023

RESUMO

Since the availability of the common marmoset monkey as a primate model in neuroscience research has recently increased, much effort has been made to develop a reliable guide of the brain structures of this species. In this article, we review the development of the marmoset brain atlas and discuss a newly developed brain model, which was reconstructed from histological sections under volume-rendering technology. This kind of brain model allows virtual sections to be constructed on any axis, with nomenclatural annotations to structures in situ. This model is also applicable for the identification of structures revealed in magnetic resonance imaging studies. The brain model is accessible at the following web address: http://brainatlas.brain.riken.jp/marmoset/modules/xoonips/listitem.php?index_id=66.


Assuntos
Atlas como Assunto , Encéfalo/anatomia & histologia , Callithrix/anatomia & histologia , Animais , Técnicas Histológicas , Imageamento por Ressonância Magnética
13.
J Neurosci ; 34(47): 15779-92, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25411505

RESUMO

Synaptic cell adhesion molecules are increasingly gaining attention for conferring specific properties to individual synapses. Netrin-G1 and netrin-G2 are trans-synaptic adhesion molecules that distribute on distinct axons, and their presence restricts the expression of their cognate receptors, NGL1 and NGL2, respectively, to specific subdendritic segments of target neurons. However, the neural circuits and functional roles of netrin-G isoform complexes remain unclear. Here, we use netrin-G-KO and NGL-KO mice to reveal that netrin-G1/NGL1 and netrin-G2/NGL2 interactions specify excitatory synapses in independent hippocampal pathways. In the hippocampal CA1 area, netrin-G1/NGL1 and netrin-G2/NGL2 were expressed in the temporoammonic and Schaffer collateral pathways, respectively. The lack of presynaptic netrin-Gs led to the dispersion of NGLs from postsynaptic membranes. In accord, netrin-G mutant synapses displayed opposing phenotypes in long-term and short-term plasticity through discrete biochemical pathways. The plasticity phenotypes in netrin-G-KOs were phenocopied in NGL-KOs, with a corresponding loss of netrin-Gs from presynaptic membranes. Our findings show that netrin-G/NGL interactions differentially control synaptic plasticity in distinct circuits via retrograde signaling mechanisms and explain how synaptic inputs are diversified to control neuronal activity.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Sinapses/fisiologia , Animais , Dendritos/ultraestrutura , Potenciação de Longa Duração/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Netrinas , Técnicas de Patch-Clamp , Sinapses/ultraestrutura
14.
Neuroreport ; 25(8): 556-61, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24784584

RESUMO

The inferior olive (IO) sends excitatory inputs to the cerebellar cortex and cerebellar nuclei through the climbing fibers. In eyeblink conditioning, a model of motor learning, the inactivation of or a lesion in the IO impairs the acquisition or expression of conditioned eyeblink responses. Additionally, climbing fibers originating from the IO are believed to transmit the unconditioned stimulus to the cerebellum in eyeblink conditioning. Studies using fear-conditioned bradycardia showed that the cerebellum is associated with adaptive control of heart rate. However, the role of inputs from the IO to the cerebellum in fear-conditioned bradycardia has not yet been investigated. To examine this possible role, we tested fear-conditioned bradycardia in mice by selective disruption of the IO using 3-acetylpyridine. In a rotarod test, mice with an IO lesion were unable to remain on the rod. The number of neurons of IO nuclei in these mice was decreased to ∼40% compared with control mice. Mice with an IO lesion did not show changes in the mean heart rate or in heart rate responses to a conditioned stimulus, or in their responses to a painful stimulus in a tail-flick test. However, they did show impairment of the acquisition/expression of conditioned bradycardia and attenuation of heart rate responses to a pain stimulus used as an unconditioned stimulus. These results indicate that the IO inputs to the cerebellum play a key role in the acquisition/expression of conditioned bradycardia.


Assuntos
Bradicardia/etiologia , Condicionamento Psicológico , Medo , Núcleo Olivar/lesões , Núcleo Olivar/fisiologia , Animais , Contagem de Células , Cerebelo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Olivar/citologia , Teste de Desempenho do Rota-Rod , beta-Alanina/toxicidade
15.
Philos Trans R Soc Lond B Biol Sci ; 369(1633): 20130144, 2014 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-24298146

RESUMO

The microtubule-associated protein tau is a principal component of neurofibrillary tangles, and has been identified as a key molecule in Alzheimer's disease and other tauopathies. However, it is unknown how a protein that is primarily located in axons is involved in a disease that is believed to have a synaptic origin. To investigate a possible synaptic function of tau, we studied synaptic plasticity in the hippocampus and found a selective deficit in long-term depression (LTD) in tau knockout mice in vivo and in vitro, an effect that was replicated by RNAi knockdown of tau in vitro. We found that the induction of LTD is associated with the glycogen synthase kinase-3-mediated phosphorylation of tau. These observations demonstrate that tau has a critical physiological function in LTD.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Sinapses/fisiologia , Tauopatias/fisiopatologia , Proteínas tau/metabolismo , Animais , Western Blotting , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdissecção , Microscopia Eletrônica , Fosforilação , Interferência de RNA , Ratos , Ratos Wistar , Frações Subcelulares , Proteínas tau/genética
16.
Exp Brain Res ; 231(1): 65-74, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23995563

RESUMO

Degus (Octodon degus) are rodents that are becoming more widely used in the neuroscience field. Degus display several more complex behaviors than rats and mice, including complicated social behaviors, vocal communications, and tool usage with superb manual dexterity. However, relatively little information is known about the anatomy of degu brains. Therefore, for these complex behaviors to be correlated with specific brain regions, a contemporary atlas of the degu brain is required. This manuscript describes the construction of a three-dimensional (3D) volume rendered model of the degu brain that combines histological and magnetic resonance images. This atlas provides several advantages, including the ability to visualize the surface of the brain from any angle. The atlas also permits virtual cutting of brain sections in any plane and provides stereotaxic coordinates for all sections, to be beneficial for both experimental surgeries and radiological studies. The reconstructed 3D atlas is freely available online at: http://brainatlas.brain.riken.jp/degu/modules/xoonips/listitem.php?index_id=24 .


Assuntos
Encéfalo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Octodon/anatomia & histologia , Animais , Atlas como Assunto , Mapeamento Encefálico , Corantes , Imageamento Tridimensional , Neurocirurgia , Padrões de Referência , Software , Técnicas Estereotáxicas
17.
Proc Natl Acad Sci U S A ; 110(35): 14124-31, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23912185

RESUMO

We investigated a unique microzone of the cerebellum located in folium-p (fp) of rabbit flocculus. In fp, Purkinje cells were potently excited by stimulation of the hypothalamus or mesencephalic periaqueductal gray, which induced defense reactions. Using multiple neuroscience techniques, we determined that this excitation was mediated via beaded axons of orexinergic hypothalamic neurons passing collaterals through the mesencephalic periaqueductal gray. Axonal tracing studies using DiI and biotinylated dextran amine evidenced the projection of fp Purkinje cells to the ventrolateral corner of the ipsilateral parabrachial nucleus (PBN). Because, in defense reactions, arterial blood flow has been known to redistribute from visceral organs to active muscles, we hypothesized that, via PBN, fp adaptively controls arterial blood flow redistribution under orexin-mediated neuromodulation that could occur in defense behavior. This hypothesis was supported by our finding that climbing fiber signals to fp Purkinje cells were elicited by stimulation of the aortic nerve, a high arterial blood pressure, or a high potassium concentration in muscles, all implying errors in the control of arterial blood flow. We further examined the arterial blood flow redistribution elicited by electric foot shock stimuli in awake, behaving rabbits. We found that systemic administration of an orexin antagonist attenuated the redistribution and that lesioning of fp caused an imbalance in the redistribution between active muscles and visceral organs. Lesioning of fp also diminished foot shock-induced increases in the mean arterial blood pressure. These results collectively support the hypothesis that the fp microcomplex adaptively controls defense reactions under orexin-mediated neuromodulation.


Assuntos
Artérias/fisiologia , Comportamento Animal , Circulação Sanguínea , Cerebelo/irrigação sanguínea , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neuropeptídeos/fisiologia , Animais , Iontoforese , Masculino , Orexinas , Células de Purkinje/fisiologia , Coelhos
18.
J Neurosci ; 33(30): 12186-96, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23884927

RESUMO

The structural maintenance of neural circuits is critical for higher brain functions in adulthood. Although several molecules have been identified as regulators for spine maintenance in hippocampal and cortical neurons, it is poorly understood how Purkinje cell (PC) spines are maintained in the mature cerebellum. Here we show that the calcium channel type 1 inositol trisphosphate receptor (IP3R1) in PCs plays a crucial role in controlling the maintenance of parallel fiber (PF)-PC synaptic circuits in the mature cerebellum in vivo. Significantly, adult mice lacking IP3R1 specifically in PCs (L7-Cre;Itpr1(flox/flox)) showed dramatic increase in spine density and spine length of PCs, despite having normal spines during development. In addition, the abnormally rearranged PF-PC synaptic circuits in mature cerebellum caused unexpectedly severe ataxia in adult L7-Cre;Itpr1(flox/flox) mice. Our findings reveal a specific role for IP3R1 in PCs not only as an intracellular mediator of cerebellar synaptic plasticity induction, but also as a critical regulator of PF-PC synaptic circuit maintenance in the mature cerebellum in vivo; this mechanism may underlie motor coordination and learning in adults.


Assuntos
Ataxia Cerebelar/fisiopatologia , Cerebelo/fisiologia , Espinhas Dendríticas/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células de Purkinje/fisiologia , Animais , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Cerebelo/citologia , Cerebelo/patologia , Quimera , Espinhas Dendríticas/patologia , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Plasticidade Neuronal/fisiologia , Nistagmo Optocinético/fisiologia , Células de Purkinje/citologia , Células de Purkinje/ultraestrutura , Reflexo Vestíbulo-Ocular/fisiologia , Sinapses/fisiologia
19.
J Comp Neurol ; 521(1): 203-12, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22700307

RESUMO

Swine hemagglutinating encephalomyelitis virus (HEV) has been shown to have a capability to propagate via neural circuits to the central nervous system after peripheral inoculation, resulting in acute deadly encephalomyelitis in natural host piglets as well as in experimental younger rodents. This study has systematically examined the assembly and dissemination of HEV 67N in the primary motor cortex of infected rats and provides additional evidence indicating that membranous-coating-mediated endo-/exocytosis can be used by HEV for its transsynaptic transfer. In addition, our results suggested that this transsynaptic pathway could adapted for larger granular materials, such as viruses. These findings should help in understanding the mechanisms underlying coronavirus infections as well as the intercellular exchanges occurring at the synaptic junctions.


Assuntos
Sistema Nervoso Central/patologia , Infecções por Coronavirus/patologia , Coronavirus/metabolismo , Neurônios/patologia , Sinapses/patologia , Proteínas da Matriz Viral/metabolismo , Animais , Linhagem Celular Transformada , Sistema Nervoso Central/ultraestrutura , Vesículas Revestidas/patologia , Vesículas Revestidas/ultraestrutura , Vesículas Revestidas/virologia , Modelos Animais de Doenças , Masculino , Neurônios/ultraestrutura , Neurônios/virologia , Transporte Proteico/fisiologia , Ratos , Ratos Wistar , Suínos , Sinapses/ultraestrutura , Sinapses/virologia
20.
Eur J Neurosci ; 37(3): 339-50, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23136934

RESUMO

Some central nervous system neurons express receptors of gastrointestinal hormones, but their pharmacological actions are not well known. Previous anatomical and unit recording studies suggest that a group of cerebellar Purkinje cells express motilin receptors, and motilin depresses the spike discharges of vestibular nuclear neurons that receive direct cerebellar inhibition in rats or rabbits. Here, by the slice-patch recording method, we examined the pharmacological actions of motilin on the mouse medial vestibular nuclear neurons (MVNs), which play an important role in the control of ocular reflexes. A small number of MVNs, as well as cerebellar floccular Purkinje cells, were labeled with an anti-motilin receptor antibody. Bath application of motilin (0.1 µm) decreased the discharge frequency of spontaneous action potentials in a group of MVNs in a dose-dependent manner (K(d) , 0.03 µm). The motilin action on spontaneous action potentials was blocked by apamin (100 nm), a blocker of small-conductance Ca(2+) -activated K(+) channels. Furthermore, motilin enhanced the amplitudes of inhibitory postsynaptic currents (IPSCs) and miniature IPSCs, but did not affect the frequencies of miniature IPSCs. Intracellular application of pertussis toxin (PTx) (0.5 µg/µL) or guanosine triphosphate-γ-S (1 mm) depressed the motilin actions on both action potentials and IPSCs. Only 30% of MVNs examined on slices obtained from wild-type mice, but none of the GABAergic MVNs that were studied on slices obtained from vesicular γ-aminobutyric acid transporter-Venus transgenic mice, showed such a motilin response on action potentials and IPSCs. These findings suggest that motilin could modulate small-conductance Ca(2+) -activated K(+) channels and postsynaptic γ-aminobutyric acid receptors through heterotrimeric guanosine triphosphate-binding protein-coupled receptor in a group of glutamatergic MVNs.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Motilina/farmacologia , Receptores de GABA/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Núcleos Vestibulares/metabolismo , Animais , Apamina/farmacologia , Neurônios GABAérgicos/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Toxina Pertussis/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Células de Purkinje/metabolismo , Células de Purkinje/fisiologia , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Neuropeptídeos/metabolismo , Núcleos Vestibulares/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA