Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; : e0054224, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39470238

RESUMO

This study examines the genome sequences of five endophytic bacterial isolates from the Oryza sativa microbiome to assess their potential as plant bio-inoculants. The five complete bacterial genomes from the genera Pseudomonas, Burkholderia, Sphingobacterium, Stenotrophomonas, and Pantoea were sequenced using Nanopore long-read sequencing technology.

2.
J Basic Microbiol ; : e2400312, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304989

RESUMO

The globally vital oil palm, a major oil producer, confronts productivity challenges due to Ganoderma boninense (Gb), causing output decline. Chemical control efforts have proven ineffective, prompting exploration of microbial-based biocontrol. While single fungal biocontrol research exists, the impact of employing multiple biocontrols concurrently to combat Ganoderma and enhance oil palm growth remains uncharted. This study examined four soil-derived fungal isolates for their ability to antagonize Gb PER71 in vitro. Molecular identification categorized them as Talaromyces spp. and Penicillium sp. Moreover, all isolates were revealed to have at least three plant growth-promoting (PGP) traits and were shown to have phosphoric hydrolase, ester hydrolase, peptide hydrolase, and glycosidase activities which are essential for plant growth. Furthermore, the synergistic evaluation of fungal isolates was tested against Gb PER71. One out of six combinations of fungal isolates showed a synergistic effect in vitro, and two showed a synergistic effect in planta. The application of single and combined fungal isolates tested in planta also suppressed Gb PER71 and enhanced oil palm growth compared to control groups. The findings indicate the promising potential of these isolates as biocontrol agents (BCAs) and bioformulations against Gb in oil palm cultivation.

3.
Food Chem ; 444: 138429, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330597

RESUMO

Stingless bee honey's nutritional value is gaining attention, but the impact of harvesting seasons, specifically the rainy (September 2018) and dry (February 2019) seasons in Malaysia on the honey's physicochemical properties and volatile compounds remains insufficiently explored. This research revealed marginal differences in the physicochemical properties between seasons. However, through individual bee species and cumulative data analysis, honey samples were effectively differentiated based on harvesting seasons. A set of seventeen volatile compounds were identified as potential chemical markers for distinguishing H. bakeri, G. thoracica, and T. binghami honey between rainy and dry seasons. For cumulative data, four significant markers were proposed. These discrimination methods and chemical markers can serve as valuable references in distinguishing stingless bee honey, whether its entomological origin is specified or not between rainy and dry seasons.


Assuntos
Mel , Abelhas , Animais , Mel/análise , Estações do Ano , Quimiometria , Máquina de Vetores de Suporte , Malásia
4.
Food Chem ; 426: 136568, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37437500

RESUMO

The fermentation of Malaysian fish sauce (budu) varies from one to twelve months depending on the producer, resulting in inconsistent quality. The microbiota, their predicted metabolic pathways and volatile metabolites profiles were determined at different stages of budu fermentation. Budu fermented for 1 and 3 months were characterized by the presence of Gram negative Enterobacterales, Gammaproteobacteria, and Fusobacteriaceae, which continuously decrease in abundance over fermentation time. The metabolic pathways prediction grouped 1- and 3- month budu in a cluster enriched with degradation reactions. 6-month budu were dominated by Halanaerobium and Staphylococcus, while the 12-month were dominated by Lentibacillus, Bacilli, and Halomonas. Biosynthesis-type predicted pathways involving protein and lipid derivatives were enriched in 6- and 12-month fermented budu, accumulating 2,6-dimethylpyrazine, methyl 2-ethyldecanoate, 2-phenylacetaldehyde, 3-methylbutanal, and 3-methylbutanoic acid. These compounds may indicate budu maturity and quality. This result may assist as a reference for quality control and fermentation monitoring.


Assuntos
Bacillus , Animais , Fermentação , Redes e Vias Metabólicas , Produtos Pesqueiros/análise
5.
Mycologia ; 115(2): 178-186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893072

RESUMO

Banana (Musa spp.), an important food crop in many parts of the world, is threatened by a deadly wilt disease caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4). Increasing evidence indicates that plant actively recruits beneficial microbes in the rhizosphere to suppress soil-borne pathogens. Hence, studies on the composition and diversity of the root-associated microbial communities are important for banana health. Research on beneficial microbial communities has focused on bacteria, although fungi can also influence soil-borne disease. Here, high-throughput sequencing targeting the fungal internal transcribed spacer (ITS) was employed to systematically characterize the difference in the soil fungal community associated with Fusarium wilt (FW) of banana. The community structure of fungi in the healthy and TR4-infected rhizospheres was significantly different compared with that of bulk soil within the same farm. The rhizosphere soils of infected plants exhibited higher richness and diversity compared with healthy plants, with significant abundance of Fusarium genus at 14%. In the healthy rhizosphere soil, Penicillium spp. were more abundant at 7% and positively correlated with magnesium. This study produced a detailed description of fungal community structure in healthy and TR4-infected banana soils in Malaysia and identified candidate biomarker taxa that may be associated with FW disease promotion and suppression. The findings also expand the global inventory of fungal communities associated with the components of asymptomatic and symptomatic banana plants infected by TR4.


Assuntos
Fusarium , Musa , Micobioma , Fusarium/genética , Musa/microbiologia , Solo/química , Incidência , Malásia , Doenças das Plantas/microbiologia
6.
World J Microbiol Biotechnol ; 39(5): 123, 2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36934342

RESUMO

In today's fast-shifting climate change scenario, crops are exposed to environmental pressures, abiotic and biotic stress. Hence, these will affect the production of agricultural products and give rise to a worldwide economic crisis. The increase in world population has exacerbated the situation with increasing food demand. The use of chemical agents is no longer recommended due to adverse effects towards the environment and health. Biocontrol agents (BCAs) and biostimulants, are feasible options for dealing with yield losses induced by plant stresses, which are becoming more intense due to climate change. BCAs and biostimulants have been recommended due to their dual action in reducing both stresses simultaneously. Although protection against biotic stresses falls outside the generally accepted definition of biostimulant, some microbial and non-microbial biostimulants possess the biocontrol function, which helps reduce biotic pressure on crops. The application of synergisms using BCAs and biostimulants to control crop stresses is rarely explored. Currently, a combined application using both agents offer a great alternative to increase the yield and growth of crops while managing stresses. This article provides an overview of crop stresses and plant stress responses, a general knowledge on synergism, mathematical modelling used for synergy evaluation and type of in vitro and in vivo synergy testing, as well as the application of synergism using BCAs and biostimulants in reducing crop stresses. This review will facilitate an understanding of the combined effect of both agents on improving crop yield and growth and reducing stress while also providing an eco-friendly alternative to agroecosystems.


Assuntos
Agricultura , Estresse Fisiológico , Produtos Agrícolas , Mudança Climática
7.
Anal Biochem ; 656: 114861, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985482

RESUMO

Food fraudulence and food contamination are major concerns, particularly among consumers with specific dietary, cultural, lifestyle, and religious requirements. Current food authentication methods have several drawbacks and limitations, necessitating the development of a simpler, more sensitive, and rapid detection approach for food screening analysis, such as an aptamer-based biosensor system. Although the use of aptamer is growing in various fields, aptamer applications for food authentication are still lacking. In this review, we discuss the limitations of existing food authentication technologies and describe the applications of aptamer in food analyses. We also project several potential targets or marker molecules to be targeted in the SELEX process. Finally, this review highlights the drawbacks of current aptamer technologies and outlines the potential route of aptamer selection and applications for successful food authentication. This review provides an overview of the use of aptamer in food research and its potential application as a molecular reporter for rapid detection in food authentication process. Developing databases to store all biochemical profiles of food and applying machine learning algorithms against the biochemical profiles are urged to accelerate the identification of more reliable biomarker molecules as aptamer targets for food authentication.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Alérgenos , Aptâmeros de Nucleotídeos/química , Biomarcadores/análise , Técnicas Biossensoriais/métodos , Análise de Alimentos/métodos , Técnica de Seleção de Aptâmeros/métodos
8.
Sci Rep ; 12(1): 7107, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501317

RESUMO

Silage produced in tropical countries is prone to spoilage because of high humidity and temperature. Therefore, determining indigenous bacteria as potential inoculants is important to improve silage quality. This study aimed to determine bacterial community and functional changes associated with ensiling using amplicon metagenomics and to predict potential bacterial additives associated with silage quality in the Malaysian climate. Silages of two forage crops (sweet corn and Napier) were prepared, and their fermentation properties and functional bacterial communities were analysed. After ensiling, both silages were predominated by lactic acid bacteria (LAB), and they exhibited good silage quality with significant increment in lactic acid, reductions in pH and water-soluble carbohydrates, low level of acetic acid and the absence of propionic and butyric acid. LAB consortia consisting of homolactic and heterolactic species were proposed to be the potential bacterial additives for sweet corn and Napier silage fermentation. Tax4fun functional prediction revealed metabolic pathways related to fermentation activities (bacterial division, carbohydrate transport and catabolism, and secondary metabolite production) were enriched in ensiled crops (p < 0.05). These results might suggest active transport and metabolism of plant carbohydrates into a usable form to sustain bacterial reproduction during silage fermentation, yielding metabolic products such as lactic acid. This research has provided a comprehensive understanding of bacterial communities before and after ensiling, which can be useful for desirable silage fermentation in Malaysia.


Assuntos
Metagenômica , Silagem , Bactérias , Carboidratos , Produtos Agrícolas , Ácido Láctico/metabolismo , Silagem/microbiologia
9.
Sci Rep ; 12(1): 999, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046475

RESUMO

Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4) is a soil-borne disease that infects bananas, causing severe economic losses worldwide. To reveal the relationship between bacterial populations and FW, the bacterial communities of healthy and TR4-infected rhizosphere and bulk soils were compared using 16S rRNA gene sequencing. Soil physicochemical properties associated with FW were also analyzed. We found the community structure of bacteria in the healthy and TR4 infected rhizosphere was significantly different compared to bulk soil within the same farm. The rhizosphere soils of infected plants exhibited higher richness and diversity than healthy plant with significant abundance of Proteobacteria. In the healthy rhizosphere soil, beneficial bacteria such as Burkholderia and Streptomyces spp. were more abundant. Compared to the infected rhizosphere soil, healthy rhizosphere soil was associated with RNA metabolism and transporters pathways and a high level of magnesium and cation exchange capacity. Overall, we reported changes in the key taxa of rhizospheric bacterial communities and soil physicochemical properties of healthy and FW-infected plants, suggesting their potential role as indicators for plant health.


Assuntos
Musa , Doenças das Plantas/microbiologia , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fusarium , Magnésio/análise , Malásia , RNA Ribossômico 16S/análise , Rizosfera
10.
PLoS One ; 16(1): e0245354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33418559

RESUMO

Klebsiella pneumoniae are opportunistic bacteria found in the gut. In recent years they have been associated with nosocomial infections. The increased incidence of multiple drug-resistant K. pneumoniae makes it necessary to find new alternatives to treat the disease. In this study, phage UPM2146 was isolated from a polluted lake which can lyse its host K. pneumoniae ATCC BAA-2146. Observation from TEM shows that UPM2146 belongs to Caudoviriales (Order) based on morphological appearance. Whole genome analysis of UPM2146 showed that its genome comprises 160,795 bp encoding for 214 putative open reading frames (ORFs). Phylogenetic analysis revealed that the phage belongs to Ackermannviridae (Family) under the Caudoviriales. UPM2146 produces clear plaques with high titers of 1010 PFU/ml. The phage has an adsorption period of 4 min, latent period of 20 min, rise period of 5 min, and releases approximately 20 PFU/ bacteria at Multiplicity of Infection (MOI) of 0.001. UPM2146 has a narrow host-range and can lyse 5 out of 22 K. pneumoniae isolates (22.72%) based on spot test and efficiency of plating (EOP). The zebrafish larvae model was used to test the efficacy of UPM2146 in lysing its host. Based on colony forming unit counts, UPM2146 was able to completely lyse its host at 10 hours onwards. Moreover, we show that the phage is safe to be used in the treatment against K. pneumoniae infections in the zebrafish model.


Assuntos
Bacteriófagos/fisiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/virologia , Animais , Bacteriófagos/genética , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Genoma Viral , Especificidade de Hospedeiro , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/terapia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/fisiologia , Terapia por Fagos , Peixe-Zebra
11.
Food Chem ; 346: 128654, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33461823

RESUMO

Identification of honey origin based on specific chemical markers is important for honey authentication. This study is aimed to differentiate Malaysian stingless bee honey from different entomological origins (Heterotrigona bakeri, Geniotrigona thoracica and Tetrigona binghami) based on physicochemical properties (pH, moisture content, ash, total soluble solid and electrical conductivity) and volatile compound profiles. The discrimination pattern of 75 honey samples was observed using Principal Component Analysis (PCA), Hierarchical Clustering Analysis (HCA), Partial Least Square-Discriminant Analysis (PLS-DA), and Support Vector Machine (SVM). The profiles of H. bakeri and G. thoracica honey were close to each other, but clearly separated from T. binghami honey, consistent with their phylogenetic relationship. T. binghami honey is marked by significantly higher electrical conductivity, moisture and ash content, and high abundance of 2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl-1-cyclohexene-1-acetaldehyde and ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-yl carbonate. Copaene was proposed as chemical marker for G. thoracica honey. The potential of different parameters that aid in honey authentication was highlighted.


Assuntos
Abelhas/química , Mel/análise , Aprendizado de Máquina , Compostos Orgânicos Voláteis/análise , Animais , Análise por Conglomerados , Análise Discriminante , Análise dos Mínimos Quadrados , Filogenia , Análise de Componente Principal
12.
Front Microbiol ; 11: 960, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714281

RESUMO

The inhibitory properties of novel antimicrobial proteins against food-borne pathogens such as Listeria monocytogenes offer extensive benefits to the food and medical industries. In this study, we have identified antimicrobial proteins from a milk curd-derived bacterial isolate that exhibits antilisterial activity using genome mining and mass spectrometry analysis. The analysis of the draft genome sequence identified the isolate as Paenibacillus polymyxa Kp10, and predicted the presence of antimicrobial paenibacillin, paenilan, paeninodin, sactipeptides, thiazole-oxazole modified microcin, and histone-like DNA binding protein HU encoded in its genome. Interestingly, nanoLC-MS/MS analysis identified two histone-like DNA binding proteins HU as predicted in silico earlier, exhibiting antilisterial activity. Additionally, translation initiation factor IF-1 and 50S ribosomal protein L29 were also discovered by the mass spectrometry in the active fractions. The antilisterial activity of the four proteins was verified through heterologous protein expression and antimicrobial activity assay in vitro. This study has identified structural regulatory proteins from Paenibacillus possessing antilisterial activity with potential future application in the food and medical industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA