Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1114935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860899

RESUMO

Sorghum is the fifth most important cereal crop. Here we performed molecular genetic analyses of the 'SUGARY FETERITA' (SUF) variety, which shows typical sugary endosperm traits (e.g., wrinkled seeds, accumulation of soluble sugars, and distorted starch). Positional mapping indicated that the corresponding gene was located on the long arm of chromosome 7. Within the candidate region of 3.4 Mb, a sorghum ortholog for maize Su1 (SbSu) encoding a starch debranching enzyme ISA1 was found. Sequencing analysis of SbSu in SUF uncovered nonsynonymous single nucleotide polymorphisms (SNPs) in the coding region, containing substitutions of highly conserved amino acids. Complementation of the rice sugary-1 (osisa1) mutant line with the SbSu gene recovered the sugary endosperm phenotype. Additionally, analyzing mutants obtained from an EMS-induced mutant panel revealed novel alleles with phenotypes showing less severe wrinkles and higher Brix scores. These results suggested that SbSu was the corresponding gene for the sugary endosperm. Expression profiles of starch synthesis genes during the grain-filling stage demonstrated that a loss-of-function of SbSu affects the expression of most starch synthesis genes and revealed the fine-tuned gene regulation in the starch synthetic pathway in sorghum. Haplotype analysis using 187 diverse accessions from a sorghum panel revealed the haplotype of SUF showing severe phenotype had not been used among the landraces and modern varieties. Thus, weak alleles (showing sweet and less severe wrinkles), such as in the abovementioned EMS-induced mutants, are more valuable for grain sorghum breeding. Our study suggests that more moderate alleles (e.g. produced by genome editing) should be beneficial for improving grain sorghum.

2.
Sci Rep ; 11(1): 4532, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633216

RESUMO

Heterosis helps increase the biomass of many crops; however, while models for its mechanisms have been proposed, it is not yet fully understood. Here, we use a QTL analysis of the progeny of a high-biomass sorghum F1 hybrid to examine heterosis. Five QTLs were identified for culm length and were explained using the dominance model. Five resultant homozygous dominant alleles were used to develop pyramided lines, which produced biomasses like the original F1 line. Cloning of one of the uncharacterised genes (Dw7a) revealed that it encoded a MYB transcription factor, that was not yet proactively used in modern breeding, suggesting that combining classic dw1or dw3, and new (dw7a) genes is an important breeding strategy. In conclusion, heterosis is explained in this situation by the dominance model and a combination of genes that balance the shortness and early flowering of the parents, to produce F1 seed yields.


Assuntos
Estudos de Associação Genética , Vigor Híbrido/genética , Modelos Genéticos , Locos de Características Quantitativas , Característica Quantitativa Herdável , Sorghum/genética , Alelos , Mapeamento Cromossômico , Clonagem Molecular , Expressão Gênica , Genes Dominantes , Genes de Plantas , Hibridização Genética , Japão , Melhoramento Vegetal
3.
Planta ; 250(5): 1557-1566, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31359138

RESUMO

MAIN CONCLUSION: Morphological and genetic markers indicate that in sorghum, the juvenile-to-adult phase transition occurs during the fourth and fifth leaf stages. This timing differs from those reported for other plants. The juvenile-to-adult (JA) phase transition is an important event for optimizing vegetative growth and reproductive success in plants. Among the Poaceae crops, which are a vital food source for humans, studies of the JA phase transition have been restricted to rice and maize. We studied the morphological and genetic changes that occur during the early development of sorghum and found that dramatic changes occur in shoot architecture during the early vegetative stages. Changes were observed in leaf size, leaf shape, numbers of trichomes, and size of the shoot apical meristem. In particular, the length/width ratios of the leaf blades in the fifth and upper leaves were completely different from those of the second to fourth leaves. The fifth and upper leaves have trichomes on their adaxial sides, which were absent on the lower leaves. We also analyzed expression of two microRNAs that are known to be molecular markers of the JA phase transition and found that expression of miR156 was highest in the second to fourth leaves and then was gradually down-regulated, whereas miR172 expression followed the opposite pattern. These results suggest that in sorghum, the second and third leaves represent the juvenile phase, the fourth and fifth leaves are in the transition stage, and the sixth and upper leaves are in the adult phase. Thus, the JA phase transition occurs during the fourth and fifth leaf stages. These findings are expected to be useful for understanding the early development of sorghum.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Sorghum/genética , Meristema/anatomia & histologia , Meristema/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , RNA de Plantas/genética , Sorghum/anatomia & histologia , Tricomas/anatomia & histologia , Tricomas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA