Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
J Pediatr Gastroenterol Nutr ; 78(6): 1234-1240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38682404

RESUMO

OBJECTIVES: Central Line-associated Bloodstream Infections (CLABSIs) pose a serious mortality and morbidity risk. An institutional protocol was developed for the evaluation and empirical antibiotic treatment of possible CLABSIs. The potential impact of de-escalating antimicrobial therapy based on initial Gram stain and molecular identification was assessed. METHODS: All positive blood cultures from patients admitted to the gastroenterology service at a large pediatric medical center were collected from 1/1/14 to 12/31/20. Cultures that were negative, repeated, or causative organisms that were unable to be identified with susceptibility data were excluded. Timepoints and organism(s) from each culture were recorded. Polymicrobial cultures were classified as containing only gram-positive organisms (polymicrobial GP), only gram-negative organisms (polymicrobial GN), or mixed spectrum. RESULTS: During the 6-year period, 361 positive blood cultures were included in the study. Single isolates were identified in 79.5% (287/361) of cultures. Polymicrobial cultures from confirmed central line source accounted for 15.0% (54/361), with 6.4% (23/361) Polymicrobial GP, 4.4% (16/361) Polymicrobial GN, and 4.2% (15/361) being mixed-spectrum cultures. Both organism types were detected on initial gram-stain in 40% (6/15) of the mixed-spectrum cultures, another 26.7% (4/15) had the opposite-spectrum organism identified within an average of <3 h and the remaining 33.3% (5/15) had the opposite-spectrum organism identified by culture growth. CONCLUSIONS: Polymicrobial mixed-spectrum cultures accounted for <5% of positive blood cultures and most isolates were identified within 3 h of first positivity. This may allow for further investigation of early de-escalation of therapy for this population and limit antimicrobial exposure.


Assuntos
Antibacterianos , Infecções Relacionadas a Cateter , Humanos , Criança , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Feminino , Masculino , Infecções Relacionadas a Cateter/microbiologia , Infecções Relacionadas a Cateter/tratamento farmacológico , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Pré-Escolar , Lactente , Hemocultura/métodos , Cateterismo Venoso Central/efeitos adversos , Pacientes Internados/estatística & dados numéricos , Adolescente , Estudos Retrospectivos
2.
J Allergy Clin Immunol ; 153(6): 1647-1654, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38309597

RESUMO

BACKGROUND: Farm exposures in early life reduce the risks for childhood allergic diseases and asthma. There is less information about how farm exposures relate to respiratory illnesses and mucosal immune development. OBJECTIVE: We hypothesized that children raised in farm environments have a lower incidence of respiratory illnesses over the first 2 years of life than nonfarm children. We also analyzed whether farm exposures or respiratory illnesses were related to patterns of nasal cell gene expression. METHODS: The Wisconsin Infant Study Cohort included farm (n = 156) and nonfarm (n = 155) families with children followed to age 2 years. Parents reported prenatal farm and other environmental exposures. Illness frequency and severity were assessed using illness diaries and periodic surveys. Nasopharyngeal cell gene expression in a subset of 64 children at age 2 years was compared to farm exposure and respiratory illness history. RESULTS: Farm versus nonfarm children had nominally lower rates of respiratory illnesses (rate ratio 0.82 [95% CI, 0.69, 0.97]) with a stepwise reduction in illness rates in children exposed to 0, 1, or ≥2 animal species, but these trends were nonsignificant in a multivariable model. Farm exposures and preceding respiratory illnesses were positively related to nasal cell gene signatures for mononuclear cells and innate and antimicrobial responses. CONCLUSIONS: Maternal and infant exposure to farms and farm animals was associated with nonsignificant trends for reduced respiratory illnesses. Nasal cell gene expression in a subset of children suggests that farm exposures and respiratory illnesses in early life are associated with distinct patterns of mucosal immune expression.


Assuntos
Exposição Ambiental , Fazendas , Mucosa Nasal , Doenças Respiratórias , Humanos , Feminino , Animais , Masculino , Lactente , Exposição Ambiental/efeitos adversos , Pré-Escolar , Mucosa Nasal/imunologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/epidemiologia , Doenças Respiratórias/genética , Animais Domésticos/imunologia , Recém-Nascido , Wisconsin/epidemiologia
3.
Blood ; 143(12): 1181-1192, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38227933

RESUMO

ABSTRACT: Vitamin A plays a key role in the maintenance of gastrointestinal homeostasis and promotes a tolerogenic phenotype in tissue resident macrophages. We conducted a prospective randomized double-blinded placebo-controlled clinical trial in which 80 recipients of hematopoietic stem cell transplantation (HSCT) were randomized 1:1 to receive pretransplant high-dose vitamin A or placebo. A single oral dose of vitamin A of 4000 IU/kg, maximum 250 000 IU was given before conditioning. The primary end point was incidence of acute graft-versus-host disease (GVHD) at day +100. In an intent-to-treat analysis, incidence of acute GVHD was 12.5% in the vitamin A arm and 20% in the placebo arm (P = .5). Incidence of acute gastrointestinal (GI) GVHD was 2.5% in the vitamin A arm (P = .09) and 12.5% in the placebo arm at day +180. Incidence of chronic GVHD was 5% in the vitamin A arm and 15% in the placebo arm (P = .02) at 1 year. In an "as treated" analysis, cumulative incidence of acute GI GVHD at day +180 was 0% and 12.5% in recipients of vitamin A and placebo, respectively (P = .02), and cumulative incidence of chronic GVHD was 2.7% and 15% in recipients of vitamin A and placebo, respectively (P = .01). The only possibly attributable toxicity was asymptomatic grade 3 hyperbilirubinemia in 1 recipient of vitamin A at day +30, which self-resolved. Absolute CCR9+ CD8+ effector memory T cells, reflecting gut T-cell trafficking, were lower in the vitamin A arm at day +30 after HSCT (P = .01). Levels of serum amyloid A-1, a vitamin A transport protein with proinflammatory effects, were lower in the vitamin A arm. The vitamin A arm had lower interleukin-6 (IL-6), IL-8, and suppressor of tumorigenicity 2 levels and likely a more favorable gut microbiome and short chain fatty acids. Pre-HSCT oral vitamin A is inexpensive, has low toxicity, and reduces GVHD. This trial was registered at www.ClinicalTrials.gov as NCT03202849.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Criança , Humanos , Adulto Jovem , Vitamina A , Estudos Prospectivos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
4.
Dig Liver Dis ; 56(3): 444-450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37932168

RESUMO

BACKGROUND: Pediatric acute pancreatitis (AP) is associated with significant morbidity. Therefore, improved understanding of children who will develop severe AP is critical. Adult studies have reported AP associated gut dysbiosis, but pediatric studies are lacking. AIMS: Assess stool microbial taxonomic and functional profiles of children with first attack of AP compared to those of healthy controls (HC), and between mild and severe AP METHODS: Children under 21 years hospitalized at a tertiary center (n = 30) with first AP attack were recruited including HC (n = 34) from same region. Shotgun metagenomic sequencing was performed on extracted DNA. RESULTS: Demographics were similar between AP and HC. Alpha diversity (-0.68 ± 0.13, p-value < 0.001), and beta-diversity (R2=0.13, p-value < 0.001) differed, in children with AP compared to HC. Species including R.gnavus, V.parvula, E.faecalis, C.innocuum were enriched in AP. MetaCyc pathways involved in amino acid metabolism and fatty acid beta-oxidation were enriched in AP. Beta-diversity (R2=0.06, p-value = 0.02) differed for severe AP compared to mild AP with enrichment in E.faecalis and C.citroniae. CONCLUSIONS: Gut dysbiosis occurs in pediatric AP and is associated with AP severity. A multicenter study confirming these findings could pave way for interventional trials manipulating the gut microbiome to mitigate AP severity.


Assuntos
Microbioma Gastrointestinal , Pancreatite , Adulto , Criança , Humanos , Doença Aguda , Disbiose/complicações , Disbiose/metabolismo , Fezes/química , Pancreatite/complicações
5.
Nutrients ; 15(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38068816

RESUMO

Vertical transmission of obesity is a critical contributor to the unabated obesity pandemic and the associated surge in metabolic diseases. Existing experimental models insufficiently recapitulate "human-like" obesity phenotypes, limiting the discovery of how severe obesity in pregnancy instructs vertical transmission of obesity. Here, via utility of thermoneutral housing and obesogenic diet feeding coupled to syngeneic mating of WT obese female and lean male mice on a C57BL/6 background, we present a tractable, more "human-like" approach to specifically investigate how maternal obesity contributes to offspring health. Using this model, we found that maternal obesity decreased neonatal survival, increased offspring adiposity, and accelerated offspring predisposition to obesity and metabolic disease. We also show that severe maternal obesity was sufficient to skew offspring microbiome and create a proinflammatory gestational environment that correlated with inflammatory changes in the offspring in utero and adulthood. Analysis of a human birth cohort study of mothers with and without obesity and their infants was consistent with mouse study findings of maternal inflammation and offspring weight gain propensity. Together, our results show that dietary induction of obesity in female mice coupled to thermoneutral housing can be used for future mechanistic interrogations of obesity and metabolic disease in pregnancy and vertical transmission of pathogenic traits.


Assuntos
Doenças Metabólicas , Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Masculino , Camundongos , Gravidez , Animais , Estudos de Coortes , Habitação , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Doenças Metabólicas/etiologia
6.
Cell Rep ; 42(11): 113323, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37889750

RESUMO

Intestinal colonization by antigenically foreign microbes necessitates expanded peripheral immune tolerance. Here we show commensal microbiota prime expansion of CD4 T cells unified by the Kruppel-like factor 2 (KLF2) transcriptional regulator and an essential role for KLF2+ CD4 cells in averting microbiota-driven intestinal inflammation. CD4 cells with commensal specificity in secondary lymphoid organs and intestinal tissues are enriched for KLF2 expression, and distinct from FOXP3+ regulatory T cells or other differentiation lineages. Mice with conditional KLF2 deficiency in T cells develop spontaneous rectal prolapse and intestinal inflammation, phenotypes overturned by eliminating microbiota or reconstituting with donor KLF2+ cells. Activated KLF2+ cells selectively produce IL-10, and eliminating IL-10 overrides their suppressive function in vitro and protection against intestinal inflammation in vivo. Together with reduced KLF2+ CD4 cell accumulation in Crohn's disease, a necessity for the KLF2+ subpopulation of T regulatory type 1 (Tr1) cells in sustaining commensal tolerance is demonstrated.


Assuntos
Linfócitos T CD4-Positivos , Microbiota , Camundongos , Animais , Interleucina-10/metabolismo , Linfócitos T Reguladores , Fatores de Transcrição/metabolismo , Inflamação/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo
7.
Innate Immun ; 29(8): 161-170, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37802127

RESUMO

Sepsis is a leading cause of mortality. Plasma cytokine levels may identify those at increased risk of mortality from sepsis. Our aim was to understand how obesity alters cytokine levels during early sepsis and its correlation with survival. Six-week-old C57BL/6 male mice were randomized to control (non-obese) or high fat diet (obese) for 5-7 weeks. Sepsis was induced by cecal ligation and perforation (CLP). Cytokine levels were measured from cheek bleeds 8 h after CLP, and mice were monitored for survival. Other cohorts were sacrificed 1 h after CLP for plasma and tissue. Septic obese mice had higher survival. At 8 h after sepsis, obese mice had higher adiponectin, leptin, and resistin but lower TNFα and IL-6 compared to non-obese mice. When stratified by 24-h survival, adipokines were not significantly different in obese and non-obese mice. TNFα and IL-6 were higher in non-obese, compared to obese, mice that died within 24 h of sepsis. Diet and to sepsis significantly impacted the cecal microbiome. IL-6 is a prognostic biomarker during early sepsis in non-obese and obese mice. A plausible mechanism for the survival difference in non-obese and obese mice may be the difference in gut microbiome and its evolution during sepsis.


Assuntos
Microbioma Gastrointestinal , Sepse , Animais , Masculino , Camundongos , Citocinas , Interleucina-6 , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações , Fator de Necrose Tumoral alfa
8.
Microbiome ; 11(1): 223, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833777

RESUMO

BACKGROUND: Identification of pathogenic bacteria from clinical specimens and evaluating their antimicrobial resistance (AMR) are laborious tasks that involve in vitro cultivation, isolation, and susceptibility testing. Recently, a number of methods have been developed that use machine learning algorithms applied to the whole-genome sequencing data of isolates to approach this problem. However, making AMR assessments from more easily available metagenomic sequencing data remains a big challenge. RESULTS: We present the Metagenomic Sequencing to Antimicrobial Resistance (MGS2AMR) pipeline, which detects antibiotic resistance genes (ARG) and their possible organism of origin within a sequenced metagenomics sample. This in silico method allows for the evaluation of bacterial AMR directly from clinical specimens, such as stool samples. We have developed two new algorithms to optimize and annotate the genomic assembly paths within the raw Graphical Fragment Assembly (GFA): the GFA Linear Optimal Path through seed segments (GLOPS) algorithm and the Adapted Dijkstra Algorithm for GFA (ADAG). These novel algorithms improve the sensitivity of ARG detection and aid in species annotation. Tests based on 1200 microbiome samples show a high ARG recall rate and correct assignment of the ARG origin. The MGS2AMR output can further be used in many downstream applications, such as evaluating AMR to specific antibiotics in samples from emerging intestinal infections. We demonstrate that the MGS2AMR-derived data is as informative for the entailing prediction models as the whole-genome sequencing (WGS) data. The performance of these models is on par with our previously published method (WGS2AMR), which is based on the sequencing data of bacterial isolates. CONCLUSIONS: MGS2AMR can provide researchers with valuable insights into the AMR content of microbiome environments and may potentially improve patient care by providing faster quantification of resistance against specific antibiotics, thereby reducing the use of broad-spectrum antibiotics. The presented pipeline also has potential applications in other metagenome analyses focused on the defined sets of genes. Video Abstract.


Assuntos
Antibacterianos , Metagenoma , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Bactérias , Metagenômica/métodos
9.
Cell ; 186(21): 4632-4651.e23, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37776858

RESUMO

The dynamics of immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infants and young children by analyzing blood samples and weekly nasal swabs collected before, during, and after infection with Omicron and non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, showed no sign of decay for up to 300 days. Infants mounted a robust mucosal immune response characterized by inflammatory cytokines, interferon (IFN) α, and T helper (Th) 17 and neutrophil markers (interleukin [IL]-17, IL-8, and CXCL1). The immune response in blood was characterized by upregulation of activation markers on innate cells, no inflammatory cytokines, but several chemokines and IFNα. The latter correlated with viral load and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell multi-omics. Together, these data provide a snapshot of immunity to infection during the initial weeks and months of life.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Criança , Lactente , Humanos , Pré-Escolar , SARS-CoV-2/metabolismo , Multiômica , Citocinas/metabolismo , Interferon-alfa , Imunidade nas Mucosas
10.
11.
BMJ ; 382: 1916, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604514
12.
Neurogastroenterol Motil ; 35(7): e14573, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37092330

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS), a disorder of the gut-brain axis, is affected by the microbiome. Microbial studies in pediatric IBS, especially for centrally mediated treatments, are lacking. We compared the microbiome between pediatric IBS patients and healthy controls (HC), in relation to symptom severity, and with percutaneous electrical nerve field stimulation (PENFS), a non-invasive treatment targeting central pain pathways. METHODS: We collected a stool sample, questionnaires and a 1-2 week stool and pain diary from 11 to 18 years patients with IBS. A patient subset completed 4 weeks of PENFS and repeated data collection immediately after and/or 3 months after treatment. Stool samples were collected from HC. Samples underwent metagenomic sequencing to evaluate diversity, composition, and abundance of species and MetaCyc pathways. KEY RESULTS: We included 27 cases (15.4 ± 2.5 year) and 34 HC (14.2 ± 2.9 year). Twelve species including Firmicutes spp., and carbohydrate degradation/long-chain fatty acid (LCFA) synthesis pathways, were increased in IBS but not statistically significantly associated with symptom severity. Seventeen participants (female) who completed PENFS showed improvements in pain (p = 0.012), disability (p = 0.007), and catastrophizing (p = 0.003). Carbohydrate degradation and LCFA synthesis pathways decreased post-treatment and at follow-up (FDR p-value <0.1). CONCLUSIONS AND INFERENCES: Firmicutes, including Clostridiaceae spp., and LCFA synthesis pathways were increased in IBS patients suggesting pain-potentiating effects. PENFS led to marked improvements in abdominal pain, functioning, and catastrophizing, while Clostridial species and LCFA microbial pathways decreased with treatment, suggesting these as potential targets for IBS centrally mediated treatments.


Assuntos
Síndrome do Intestino Irritável , Microbiota , Humanos , Feminino , Adolescente , Criança , Síndrome do Intestino Irritável/diagnóstico , Dor Abdominal/complicações , Catastrofização , Carboidratos
13.
Blood Adv ; 7(17): 5137-5151, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37083597

RESUMO

Intestinal permeability may correlate with adverse outcomes during hematopoietic stem cell transplantation (HSCT), but longitudinal quantification with traditional oral mannitol and lactulose is not feasible in HSCT recipients because of mucositis and diarrhea. A modified lactulose:rhamnose (LR) assay is validated in children with environmental enteritis. Our study objective was to quantify peri-HSCT intestinal permeability changes using the modified LR assay. The LR assay was administered before transplant, at day +7 and +30 to 80 pediatric and young adult patients who received allogeneic HSCT. Lactulose and rhamnose were detected using urine mass spectrometry and expressed as an L:R ratio. Metagenomic shotgun sequencing of stool for microbiome analyses and enzyme-linked immunosorbent assay analyses of plasma lipopolysaccharide binding protein (LBP), ST2, REG3α, claudin1, occludin, and intestinal alkaline phosphatase were performed at the same timepoints. L:R ratios were increased at day +7 but returned to baseline at day +30 in most patients (P = .014). Conditioning regimen intensity did not affect the trajectory of L:R (P = .39). Baseline L:R ratios did not vary with diagnosis. L:R correlated with LBP levels (r2 = 0.208; P = .0014). High L:R ratios were associated with lower microbiome diversity (P = .035), loss of anaerobic organisms (P = .020), and higher plasma LBP (P = .0014). No adverse gastrointestinal effects occurred because of LR. Intestinal permeability as measured through L:R ratios after allogeneic HSCT correlates with intestinal dysbiosis and elevated plasma LBP. The LR assay is well-tolerated and may identify transplant recipients who are more likely to experience adverse outcomes.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Lactulose , Adulto Jovem , Humanos , Criança , Lactulose/metabolismo , Ramnose , Reação de Fase Aguda , Disbiose , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Permeabilidade
14.
Cancer ; 129(13): 1986-1994, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36943918

RESUMO

BACKGROUND: The 5-year overall survival of pancreas adenocarcinoma (PCa) remains less than 10%. Clinical and tumor genomic characteristics have not differentiated PCa long-term survivors (LTSs) from unselected patients. Preclinical studies using fecal transplant experiments from LTSs of PCa have revealed delayed tumor growth through unknown mechanisms involving the fecal microbiota. However, features of the fecal microbiome in patients with long-term survival are not well described. METHODS: In this cross-sectional study, comprehensive shotgun metagenomics was performed on stool from PCa patients with long-term survival (n = 16). LTS was defined as >4 years from pancreatectomy and all therapy without recurrence. LTSs were compared to control patients with PCa who completed pancreatectomy and chemotherapy (n = 8). Stool was sequenced using an Illumina NextSeq500. Statistical analyses were performed in R with MicrobiomeSeq and Phyloseq for comparison of LTSs and controls. RESULTS: All patients underwent pancreatectomy and chemotherapy before sample donation. The median time from pancreatectomy of 6 years (4-14 years) for LTSs without evidence of disease compared to a median disease-free survival of 1.8 years from pancreatectomy in the control group. No differences were observed in overall microbial diversity for LTSs and controls using Shannon/Simpson indexes. Significant enrichment of species relative abundance was observed in LTSs for the Ruminococacceae family specifically Faecalibacterium prausnitzii species as well as Akkermansia muciniphila species. CONCLUSIONS: Stool from patients cured from PCa has more relative abundance of Faecalibacterium prausnitzii and Akkermansia muciniphila. Additional studies are needed to explore potential mechanisms by which the fecal microbiota may influence survival in PCa. PLAIN LANGUAGE SUMMARY: Although pancreatic cancer treatments have improved, the number of long-term survivors has remained stagnant with a 5-year overall survival estimate of 9%. Emerging evidence suggests that microbes within the gastrointestinal tract can influence cancer response through activation of the immune system. In this study, we profiled the stool microbiome in long-term survivors of pancreas cancer and controls. Several enriched species previously associated with enhanced tumor immune response were observed including Faecalibacterium prausnitzii and Akkermansia muciniphila. These findings warrant additional study assessing mechanisms by which the fecal microbiota may enhance pancreatic cancer immune response.


Assuntos
Metagenoma , Neoplasias Pancreáticas , Humanos , Estudos Transversais , Verrucomicrobia , Fezes , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Sobreviventes
15.
J Exp Med ; 220(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36976181

RESUMO

Intestinal epithelial cells (IECs) constitute a critical first line of defense against microbes. While IECs are known to respond to various microbial signals, the precise upstream cues regulating diverse IEC responses are not clear. Here, we discover a dual role for IEC-intrinsic interleukin-1 receptor (IL-1R) signaling in regulating intestinal homeostasis and inflammation. Absence of IL-1R in epithelial cells abrogates a homeostatic antimicrobial program including production of antimicrobial peptides (AMPs). Mice deficient for IEC-intrinsic IL-1R are unable to clear Citrobacter rodentium (C. rodentium) but are protected from DSS-induced colitis. Mechanistically, IL-1R signaling enhances IL-22R-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation in IECs leading to elevated production of AMPs. IL-1R signaling in IECs also directly induces expression of chemokines as well as genes involved in the production of reactive oxygen species. Our findings establish a protective role for IEC-intrinsic IL-1R signaling in combating infections but a detrimental role during colitis induced by epithelial damage.


Assuntos
Colite , Receptores de Interleucina-1 , Camundongos , Animais , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Intestinos , Colite/metabolismo , Inflamação/metabolismo , Células Epiteliais/metabolismo , Homeostase , Mucosa Intestinal/metabolismo
16.
J Allergy Clin Immunol ; 152(1): 73-83, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36918038

RESUMO

BACKGROUND: Frequent asthma exacerbators, defined as those experiencing more than 1 hospitalization in a year for an asthma exacerbation, represent an important subgroup of individuals with asthma. However, this group remains poorly defined and understudied in children. OBJECTIVE: Our aim was to determine the molecular mechanisms underlying asthma pathogenesis and exacerbation frequency. METHODS: We performed RNA sequencing of upper airway cells from both frequent and nonfrequent exacerbators enrolled in the Ohio Pediatric Asthma Repository. RESULTS: Through molecular network analysis, we found that nonfrequent exacerbators display an increase in modules enriched for immune system processes, including type 2 inflammation and response to infection. In contrast, frequent exacerbators showed expression of modules enriched for nervous system processes, such as synaptic formation and axonal outgrowth. CONCLUSION: These data suggest that the upper airway of frequent exacerbators undergoes peripheral nervous system remodeling, representing a novel mechanism underlying pediatric asthma exacerbation.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Criança , Transcriptoma , Asma/genética , Inflamação , Nariz , Progressão da Doença
17.
medRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778389

RESUMO

The dynamics of innate and adaptive immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to SARS-CoV-2 infection in infants and young children in the first weeks and months of life by analyzing blood samples collected before, during, and after infection with Omicron and Non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, were stably maintained for >300 days. Antigen-specific memory B cell (MCB) responses were durable for 150 days but waned thereafter. Somatic hypermutation of V-genes in MCB accumulated progressively over 9 months. The innate response was characterized by upregulation of activation markers on blood innate cells, and a plasma cytokine profile distinct from that seen in adults, with no inflammatory cytokines, but an early and transient accumulation of chemokines (CXCL10, IL8, IL-18R1, CSF-1, CX3CL1), and type I IFN. The latter was strongly correlated with viral load, and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell transcriptomics. Consistent with this, single-cell ATAC-seq revealed enhanced accessibility of chromatic loci targeted by interferon regulatory factors (IRFs) and reduced accessibility of AP-1 targeted loci, as well as traces of epigenetic imprinting in monocytes, during convalescence. Together, these data provide the first snapshot of immunity to infection during the initial weeks and months of life.

18.
Am J Respir Cell Mol Biol ; 68(5): 498-510, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36622830

RESUMO

Microbial maturation disrupted by early-life dysbiosis has been linked with increased asthma risk and severity; however, the immunological mechanisms underpinning this connection are poorly understood. We sought to understand how delaying microbial maturation drives worsened asthma outcomes later in life and its long-term durability. Drinking water was supplemented with antibiotics on Postnatal Days 10-20. To assess the immediate and long-term effects of delaying microbial maturation on experimental asthma, we initiated house dust mite exposure when bacterial diversity was either at a minimum or had recovered. Airway hyperresponsiveness, histology, pulmonary leukocyte recruitment, flow cytometric analysis of cytokine-producing lymphocytes, and assessment of serum IgG1 (Immunoglobulin G1) and IgE (Immunoglobulin E) concentrations were performed. RT-PCR was used to measure IL-13 (Interleukin 13)-induced gene expression in sequentially sorted mesenchymal, epithelial, endothelial, and leukocyte cell populations from the lung. Delayed microbial maturation increased allergen-driven airway hyperresponsiveness and Th17 frequency compared with allergen-exposed control mice, even when allergen exposure began after bacterial diversity recovered. Blockade of IL-17A (Interleukin 17A) reversed the airway hyperresponsiveness phenotype. In addition, allergen exposure in animals that experienced delayed microbial maturation showed signs of synergistic signaling between IL-13 and IL-17A in the pulmonary mesenchymal compartment. Delaying microbial maturation in neonates promotes the development of more severe asthma by increasing Th17 frequency, even if allergen exposure is initiated weeks after microbial diversity is normalized. In addition, IL-17A-aggravated asthma is associated with increased expression of IL-13-induced genes in mesenchymal, but not epithelial cells.


Assuntos
Asma , Hipersensibilidade Respiratória , Camundongos , Animais , Interleucina-17 , Interleucina-13 , Modelos Animais de Doenças , Asma/patologia , Pyroglyphidae , Alérgenos
19.
Nutrients ; 15(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678342

RESUMO

A major polymorphism in the fucosyltransferase2 (FUT2) gene influences risk of multiple gut diseases, but its impact on the microbiome of breastfed infants was unknown. In individuals with an active FUT2 enzyme ("secretors"), the intestinal mucosa is abundantly fucosylated, providing mutualist bacteria with a rich endogenous source of fucose. Non-secretors comprise approximately one-fifth of the population, and they lack the ability to create this enzyme. Similarly, maternal secretor status influences the abundance of a breastfeeding mother's fucosylated milk oligosaccharides. We compared the impact of maternal secretor status, measured by FUT2 genotype, and infant secretor status, measured by FUT2 genotype and phenotype, on early infant fecal microbiome samples collected from 2-month-old exclusively breastfed infants (n = 59). Infant secretor status (19% non-secretor, 25% low-secretor, and 56% full-secretor) was more strongly associated with the infant microbiome than it was with the maternal FUT2 genotype. Alpha diversity was greater in the full-secretors than in the low- or non-secretor infants (p = 0.049). Three distinct microbial enterotypes corresponded to infant secretor phenotype (p = 0.022) and to the dominance of Bifidobacterium breve, B. longum, or neither (p < 0.001). Infant secretor status was also associated with microbial metabolic capacity, specifically, bioenergetics pathways. We concluded that in exclusively breastfed infants, infant­but not maternal­secretor status is associated with infant microbial colonization and metabolic capacity.


Assuntos
Microbioma Gastrointestinal , Microbiota , Fucosiltransferases/genética , Genótipo , Leite Humano/metabolismo , Humanos , Feminino , Lactente , Galactosídeo 2-alfa-L-Fucosiltransferase
20.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36602872

RESUMO

Aberrant immune responses to resident microbes promote inflammatory bowel disease and other chronic inflammatory conditions. However, how microbiota-specific immunity is controlled in mucosal tissues remains poorly understood. Here, we found that mice lacking epithelial expression of microbiota-sensitive histone deacetylase 3 (HDAC3) exhibited increased accumulation of commensal-specific CD4+ T cells in the intestine, provoking the hypothesis that epithelial HDAC3 may instruct local microbiota-specific immunity. Consistent with this, microbiota-specific CD4+ T cells and epithelial HDAC3 expression were concurrently induced following early-life microbiota colonization. Further, epithelium-intrinsic ablation of HDAC3 decreased commensal-specific Tregs, increased commensal-specific Th17 cells, and promoted T cell-driven colitis. Mechanistically, HDAC3 was essential for NF-κB-dependent regulation of epithelial MHC class II (MHCII). Epithelium-intrinsic MHCII dampened local accumulation of commensal-specific Th17 cells in adult mice and protected against microbiota-triggered inflammation. Remarkably, HDAC3 enabled the microbiota to induce MHCII expression on epithelial cells and limit the number of commensal-specific T cells in the intestine. Collectively, these data reveal a central role for an epithelial histone deacetylase in directing the dynamic balance of tissue-intrinsic CD4+ T cell subsets that recognize commensal microbes and control inflammation.


Assuntos
Intestinos , Microbiota , Animais , Camundongos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Imunidade Inata , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA