Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(48): 72886-72897, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35614358

RESUMO

Because of global land surface warming, heavy metal toxicity is expected to occur more often and more intensely, affecting the growth and development of the major cereal crops such as maize (Zea mays L.) in several ways, thus affecting the production component of food security. Hence, it is important to know the best cultivars of Z. mays in abiotic stress environment to fulfill the market demand of this staple food. For this purpose, we investigate the present study to find the best Z. mays cultivar to be grown in chromium (Cr)-contaminated sand (200 µM). In this experiment, we have studied 10 cultivars (Malka, Sadaf, Pearl, CZP, YY, YH, MMRI-yellow, Sahiwal, EV-20, and EV-77) of Z. mays grown in plastic pots for 4 weeks (in addition with seed germination) under Cr - (0 µM) and Cr + (200 µM) in sand medium. Based on the findings of the current experiment, we illustrated that Cr toxicity induced a significant (P < 0.05) reduction in shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight and root dry weight, chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid content and induced oxidative damage to membrane-bounded organelles by increasing the malondialdehyde and hydrogen peroxide which were manifested by flavonoid and phenolic contents. Moreover, Cr uptake was also higher in the plants grown in the Cr-contaminated sand compared to the plants grown without the Cr-contaminated sand. We also noticed that Pearl, CZP, and Sahiwal cultivars are suggested to be Cr-tolerant cultivars as showed better growth and development in Cr-contaminated sand while Sadaf, MMRI, and EV-77 showed lower growth and composition in Cr-contaminated sand. The overall pattern of Z. mays cultivars grown in Cr-contaminated sand is as follows: Pearl > CZP > Sahiwal > YY > YH > EV-20 > Malka > EV-77 > MMRI-yellow > Sadaf. Conclusively, it can be identified that when grown in Cr-contaminated sand, Pearl, CZP, and Sahiwal have greater ability to grow in polluted soils. Overall, Z. mays cultivars showed better growth in Cr-stressed environment due to defense mechanism but further experiments needed to be conducted on molecular level.


Assuntos
Poluentes do Solo , Zea mays , Antioxidantes , Carotenoides , Clorofila , Clorofila A , Cromo/toxicidade , Flavonoides , Peróxido de Hidrogênio , Malondialdeído , Raízes de Plantas/química , Plásticos , Areia , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
2.
Saudi J Biol Sci ; 28(8): 4276-4290, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34354410

RESUMO

Barley (Hordeum vulgare L.) is a major cereal grain and is known as a halophyte (a halophyte is a salt-tolerant plant that grows in soil or waters of high salinity). We therefore conducted a pot experiment to explore plant growth and biomass, photosynthetic pigments, gas exchange attributes, stomatal properties, oxidative stress and antioxidant response and their associated gene expression and absorption of ions in H. Vulgare. The soil used for this analysis was artificially spiked at different salinity concentrations (0, 50, 100 and 150 mM) and different levels of ascorbic acid (AsA) were supplied to plants (0, 30 and 60 mM) shortly after germination of the seed. The results of the present study showed that plant growth and biomass, photosynthetic pigments, gas exchange parameters, stomatal properties and ion uptake were significantly (p < 0.05) reduced by salinity stress, whereas oxidative stress was induced in plants by generating the concentration of reactive oxygen species (ROS) in plant cells/tissues compared to plants grown in the control treatment. Initially, the activity of antioxidant enzymes and relative gene expression increased to a saline level of 100 mM, and then decreased significantly (P < 0.05) by increasing the saline level (150 mM) in the soil compared to plants grown at 0 mM of salinity. We also elucidated that negative impact of salt stress in H. vulgare plants can overcome by the exogenous application of AsA, which not only increased morpho-physiological traits but decreased oxidative stress in the plants by increasing activities of enzymatic antioxidants. We have also explained the negative effect of salt stress on H. vulgare can decrease by exogenous application of AsA, which not only improved morpho-physiological characteristics, ions accumulation in the roots and shoots of the plants, but decreased oxidative stress in plants by increasing antioxidant compounds (enzymatic and non-enzymatic). Taken together, recognizing AsA's role in nutrient uptake introduces new possibilities for agricultural use of this compound and provides a valuable basis for improving plant tolerance and adaptability to potential salinity stress adjustment.

3.
Biomolecules ; 10(4)2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290389

RESUMO

Soil and water contamination from heavy metals and metalloids is one of the most discussed and caused adverse effects on food safety and marketability, crop growth due to phytotoxicity, and environmental health of soil organisms. A hydroponic investigation was executed to evaluate the influence of citric acid (CA) on copper (Cu) phytoextraction potential of jute (Corchorus capsularis L.). Three-weeks-old seedlings of C. capsularis were exposed to different Cu concentrations (0, 50, and 100 µM) with or without the application of CA (2 mM) in a nutrient growth medium. The results revealed that exposure of various levels of Cu by 50 and 100 µM significantly (p < 0.05) reduced plant growth, biomass, chlorophyll contents, gaseous exchange attributes, and damaged ultra-structure of chloroplast in C. capsularis seedlings. Furthermore, Cu toxicity also enhanced the production of malondialdehyde (MDA) which indicated the Cu-induced oxidative damage in the leaves of C. capsularis seedlings. Increasing the level of Cu in the nutrient solution significantly increased Cu uptake by the roots and shoots of C. capsularis seedlings. The application of CA into the nutrient medium significantly alleviated Cu phytotoxicity effects on C. capsularis seedlings as seen by plant growth and biomass, chlorophyll contents, gaseous exchange attributes, and ultra-structure of chloroplast. Moreover, CA supplementation also alleviated Cu-induced oxidative stress by reducing the contents of MDA. In addition, application of CA is helpful in increasing phytoremediation potential of the plant by increasing Cu concentration in the roots and shoots of the plants which is manifested by increasing the values of bioaccumulation (BAF) and translocation factors (TF) also. These observations depicted that application of CA could be a useful approach to assist Cu phytoextraction and stress tolerance against Cu in C. capsularis seedlings grown in Cu contaminated sites.


Assuntos
Cloroplastos/ultraestrutura , Ácido Cítrico/farmacologia , Cobre/toxicidade , Corchorus/crescimento & desenvolvimento , Corchorus/fisiologia , Plântula/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Corchorus/efeitos dos fármacos , Corchorus/ultraestrutura , Gases/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Análise de Componente Principal , Plântula/efeitos dos fármacos , Plântula/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA