Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Science ; 323(5915): 793-7, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19131594

RESUMO

Cytokines such as interleukin-6 induce tyrosine and serine phosphorylation of Stat3 that results in activation of Stat3-responsive genes. We provide evidence that Stat3 is present in the mitochondria of cultured cells and primary tissues, including the liver and heart. In Stat3(-/-) cells, the activities of complexes I and II of the electron transport chain (ETC) were significantly decreased. We identified Stat3 mutants that selectively restored the protein's function as a transcription factor or its functions within the ETC. In mice that do not express Stat3 in the heart, there were also selective defects in the activities of complexes I and II of the ETC. These data indicate that Stat3 is required for optimal function of the ETC, which may allow it to orchestrate responses to cellular homeostasis.


Assuntos
Respiração Celular , Mitocôndrias/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Células Cultivadas , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Homeostase , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/metabolismo , NADH NADPH Oxirredutases/metabolismo , Fosforilação Oxidativa , Fosforilação , Células Precursoras de Linfócitos B/metabolismo , Fator de Transcrição STAT3/química , Serina/metabolismo , Transdução de Sinais
3.
Am J Physiol Heart Circ Physiol ; 292(3): H1498-506, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17114240

RESUMO

Lipid accumulation in nonadipose tissue due to enhanced circulating fatty acids may play a role in the pathophysiology of heart failure, obesity, and diabetes. Accumulation of myocardial lipids and related intermediates, e.g., ceramide, is associated with decreased contractile function, mitochondrial oxidative phosphorylation, and electron transport chain (ETC) complex activities. We tested the hypothesis that the progression of heart failure would be exacerbated by elevated myocardial lipids and an associated ceramide-induced inhibition of mitochondrial oxidative phosphorylation and ETC complex activities. Heart failure (HF) was induced by coronary artery ligation. Rats were then randomly assigned to either a normal (10% kcal from fat; HF, n = 8) or high saturated fat diet (60% kcal from saturated fat; HF + Sat, n = 7). Sham-operated animals (sham; n = 8) were fed a normal diet. Eight weeks postligation, left ventricular (LV) function was assessed by echocardiography and catheterization. Subsarcolemmal and interfibrillar mitochondria were isolated from the LV. Heart failure resulted in impaired LV contractile function [decreased percent fractional shortening and peak rate of LV pressure rise and fall (+/-dP/dt)] and remodeling (increased end-diastolic and end-systolic dimensions) in HF compared with sham. No further progression of LV dysfunction was evident in HF + Sat. Mitochondrial state 3 respiration was increased in HF + Sat compared with HF despite elevated myocardial ceramide. Activities of ETC complexes II and IV were elevated in HF + Sat compared with HF and sham. High saturated fat feeding following coronary artery ligation was associated with increased oxidative phosphorylation and ETC complex activities and did not adversely affect LV contractile function or remodeling, despite elevations in myocardial ceramide.


Assuntos
Gorduras na Dieta , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/fisiopatologia , Função Ventricular Esquerda/fisiologia , Animais , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Transporte de Elétrons , Mitocôndrias Cardíacas/efeitos dos fármacos , Fosforilação Oxidativa , Ratos , Disfunção Ventricular Esquerda/fisiopatologia
4.
Lab Invest ; 85(3): 354-63, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15696187

RESUMO

Chronic injection of dextran into normal mice elicits a glomerulonephritis (GN) that models IgA nephropathy (IgAN) in humans. Since athymic mice lack T cells but nonetheless develop antibodies to polysaccharide antigens such as dextran (DEX), we used athymic mice to study the role of T lymphocytes in the induction of this form of GN, independent of the role of T cells in antibody synthesis. Both mice given injections of diethylaminoethyl (DEAE)-DEX and uninjected mice had circulating IgM and IgA anti-DEX antibodies, which apparently arise as 'natural antibodies', but immune complex GN was observed only in the injected mice. All of 15 injected mice exhibited capillary staining for IgA and IgM; none of 12 control mice contained such IgA deposits and only one had capillary staining for IgM (both P<0.001). In addition, IgG and C3 were detected in injected but not control animals. By light microscopy, injected mice exhibited marked expansion of mesangial matrix relative to controls. Electron microscopy showed no glomerular abnormalities in control mice, whereas injected mice showed large organized fibrillar deposits principally in the mesangium. Hematuria and proteinuria were present in all 15 injected mice, but only one of 11 control mice showed hematuria or proteinuria (both P<0.001). These results indicate that chronic injection of DEAE-DEX into athymic mice generates the same clinical and histologic features of GN as in euthymic mice, suggesting that T cells are not necessary to promote GN in this model.


Assuntos
Mesângio Glomerular/imunologia , Glomerulonefrite por IGA/etiologia , Glomerulonefrite por IGA/imunologia , Imunoglobulina A/imunologia , Imunoglobulina M/imunologia , Camundongos Nus/imunologia , Linfócitos T/imunologia , Animais , Dextranos , Etanolaminas , Mesângio Glomerular/patologia , Glomerulonefrite por IGA/patologia , Hematúria/fisiopatologia , Humanos , Imunização , Camundongos , Microscopia Eletrônica de Transmissão , Proteinúria/fisiopatologia , Linfócitos T/patologia
5.
J Biol Chem ; 279(46): 47961-7, 2004 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15347666

RESUMO

Subsarcolemmal mitochondria sustain progressive damage during myocardial ischemia. Ischemia decreases the content of the mitochondrial phospholipid cardiolipin accompanied by a decrease in cytochrome c content and a diminished rate of oxidation through cytochrome oxidase. We propose that during ischemia mitochondria produce reactive oxygen species at sites in the electron transport chain proximal to cytochrome oxidase that contribute to the ischemic damage. Isolated, perfused rabbit hearts were treated with rotenone, an irreversible inhibitor of complex I in the proximal electron transport chain, immediately before ischemia. Rotenone pretreatment preserved the contents of cardiolipin and cytochrome c measured after 45 min of ischemia. The rate of oxidation through cytochrome oxidase also was improved in rotenone-treated hearts. Inhibition of the electron transport chain during ischemia lessens damage to mitochondria. Rotenone treatment of isolated subsarcolemmal mitochondria decreased the production of reactive oxygen species during the oxidation of complex I substrates. Thus, the limitation of electron flow during ischemia preserves cardiolipin content, cytochrome c content, and the rate of oxidation through cytochrome oxidase. The mitochondrial electron transport chain contributes to ischemic mitochondrial damage that in turn augments myocyte injury during subsequent reperfusion.


Assuntos
Transporte de Elétrons/fisiologia , Mitocôndrias/metabolismo , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Cardiolipinas/metabolismo , Citocromos c/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Técnicas In Vitro , Mitocôndrias/ultraestrutura , Isquemia Miocárdica/patologia , Miocárdio/patologia , Miocárdio/ultraestrutura , Oxidantes/metabolismo , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Rotenona/metabolismo , Desacopladores/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 287(1): H258-67, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14988071

RESUMO

Ischemia and reperfusion result in mitochondrial dysfunction, with decreases in oxidative capacity, loss of cytochrome c, and generation of reactive oxygen species. During ischemia of the isolated perfused rabbit heart, subsarcolemmal mitochondria, located beneath the plasma membrane, sustain a loss of the phospholipid cardiolipin, with decreases in oxidative metabolism through cytochrome oxidase and the loss of cytochrome c. We asked whether additional injury to the distal electron chain involving cardiolipin with loss of cytochrome c and cytochrome oxidase occurs during reperfusion. Reperfusion did not lead to additional damage in the distal electron transport chain. Oxidation through cytochrome oxidase and the content of cytochrome c did not further decrease during reperfusion. Thus injury to cardiolipin, cytochrome c, and cytochrome oxidase occurs during ischemia rather than during reperfusion. The ischemic injury leads to persistent defects in oxidative function during the early reperfusion period. The decrease in cardiolipin content accompanied by persistent decrements in the content of cytochrome c and oxidation through cytochrome oxidase is a potential mechanism of additional myocyte injury during reperfusion.


Assuntos
Cardiolipinas/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Isquemia Miocárdica/fisiopatologia , Respiração , Animais , Citocromos c/metabolismo , Técnicas In Vitro , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Miofibrilas/metabolismo , Fosforilação Oxidativa , Fosfolipídeos/metabolismo , Coelhos , Sarcolema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA