Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(14): 16346-16357, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617636

RESUMO

This research work aimed to develop and evaluate proniosomes for the oral delivery of the lipophilic drug Irbesartan (IRB) to improve its solubility and bioavailability. Proniosomes of Irbesartan were formulated using a lipid, surfactant, and carrier by a slurry method. Based on the prepared preliminary trial batches and their evaluation, the formulation was optimized by employing a Box-Behnken design (BBD) in which concentrations of span 60 (X1), cholesterol (X2), and mannitol (X3) were used as three independent variables and the vesicular size (VS) (Y1), % entrapment efficiency (% EE) (Y2), and % cumulative drug release (% CDR) (Y3) were used as dependent variables. The optimized batch B1 was obtained from the BBD experiment after validation of checkpoint analysis, and their characterization was done for VS, % EE, % CDR, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) analysis. The optimized batch showed a VS of 199 ± 5.4 nm, a % EE of 99.25 ± 2.24%, and a % CDR of 97.36 ± 1.13% at 24 h. Scanning electron microscopy (SEM) study showed a smooth surface of batch B1. DSC and XRD studies indicated the amorphous nature of the proniosomal formulation. The proniosomal formulation showed increased solubility (2.65 ± 0.2 mg/mL) in phosphate buffer, pH 6.8, as compared to water (0.059 ± 0.02 mg/mL). The pharmacokinetic study in rats confirmed the increased bioavailability of the drug in optimized proniosomal formulation compared with its pure drug suspension. Cmax, Tmax, and AUC0-t of the drug also increased by 2-fold compared to those of drug suspension. Thus, in conclusion, the proniosomal formulation proved to be an efficient carrier for improved oral delivery of Irbesartan by improving the solubility and bioavailability of the drug.

2.
J Biomol Struct Dyn ; : 1-19, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319066

RESUMO

Streptomyces spp. are considered excellent reservoirs of natural bioactive compounds. The study evaluated the bioactive potential of secondary metabolites from Streptomyces sp. strain 130 through PKS-I and NRPS gene-clusters screening. GC-MS analysis was done for metabolic profiling of bioactive compounds from strain 130 in the next set of experiments. Identified antifungal compounds underwent ADMET analyses to screen their toxicity. All compounds' molecular docking was done with the structural gene products of the aflatoxin biosynthetic pathway of Aspergillus flavus. MD simulations were utilized to evaluate the stability of protein-ligand complexes under physiological conditions. Based on the in-silico studies, compound 2,4-di-tert butyl-phenol (DTBP) was selected for in-vitro studies against Aspergillus flavus. Simultaneously, bioactive compounds were extracted from strain 130 in two different solvents (ethyl-acetate and methanol) and used for similar assays. The MIC value of DTBP was found to be 314 µg/mL, whereas in ethyl-acetate extract and methanol-extract, it was 250 and 350 µg/mL, respectively. A mycelium growth assay was done to analyze the effect of compounds/extracts on the mycelium formation of Aspergillus flavus. In agar diffusion assay, zone of inhibitions in DTBP, ethyl-acetate extract, and methanol extract were observed with diameters of 11.3, 13.3, and 7.6 mm, respectively. In the growth curve assay, treated samples have delayed the growth of fungi, which signified that the compounds have a fungistatic nature. Spot assay has determined the fungal sensitivity to a sub-minimum inhibitory concentration of antifungal compounds. The study's results suggested that DTBP can be exploited for antifungal-drug development.Communicated by Ramaswamy H. Sarma.

3.
Sci Rep ; 13(1): 17069, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816760

RESUMO

A global hazard to public health has been generated by the coronavirus infection 2019 (COVID-19), which is spreading quickly. Pomegranate is a strong source of antioxidants and has demonstrated a number of pharmacological characteristics. This work was aimed to analyze the phytochemicals present in ethanolic pomegranate seed extract (PSE) and their in vitro antioxidant potential and further in-silico evaluation for antiviral potential against crystal structure of two nucleocapsid proteins i.e., N-terminal RNA binding domain (NRBD) and C-terminal Domain (CTD) of SARS-CoV-2. The bioactive components from ethanolic extract of PSE were assessed by gas chromatography-mass spectroscopy (GC-MS). Free radical scavenging activity of PSE was determined using DPPH dye. Molecular docking was executed through the Glide module of Maestro software. Lipinski's 5 rule was applied for drug-likeness characteristics using cheminformatics Molinspiration software while OSIRIS Data Warrior V5.5.0 was used to predict possible toxicological characteristics of components. Thirty-two phytocomponents was detected in PSE by GC-MS technique. Free radical scavenging assay revealed the high antioxidant capacity of PSE. Docking analysis showed that twenty phytocomponents from PSE exhibited good binding affinity (Docking score ≥ - 1.0 kcal/mol) towards NRBD and CTD nucleocapsid protein. This result increases the possibility that the top 20 hits could prevent the spread of SARS-CoV-2 by concentrating on both nucleocapsid proteins. Moreover, molecular dynamics (MD) simulation using GROMACS was used to check their binding efficacy and internal dynamics of top complexes with the lowest docking scores. The metrics root mean square deviation (RMSD), root mean square fluctuation (RMSF), intermolecular hydrogen bonding (H-bonds) and radius of gyration (Rg) revealed that the lead phytochemicals form an energetically stable complex with the target protein. Majority of the phytoconstituents exhibited drug-likeness with non-tumorigenic properties. Thus, the PSE phytoconstituents could be useful source of drug or nutraceutical development in SARS-CoV-2 pathogenesis.


Assuntos
COVID-19 , Punica granatum , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , SARS-CoV-2 , Etanol , Simulação de Dinâmica Molecular , Proteínas do Nucleocapsídeo , Radicais Livres
4.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37895863

RESUMO

Oxidative stress, COX-2, LDHA and hyperglycemia are interlinked contributing pathways in the etiology, progression and metastasis of colon cancer. Additionally, dysregulated apoptosis in cells with genetic alternations leads to their progression in malignant transformation. Therefore, quinazolinones 3a-3h and 5a-5h were synthesized and evaluated as antioxidants, enzymes inhibitors and cytotoxic agents against LoVo and HCT-116 cells. Moreover, the most active cytotoxic derivatives were evaluated as apoptosis inducers. The results indicated that 3a, 3g and 5a were efficiently scavenged DPPH radicals with lowered IC50 values (mM) ranging from 0.165 ± 0.0057 to 0.191 ± 0.0099, as compared to 0.245 ± 0.0257 by BHT. Derivatives 3h, 5a and 5h were recognized as more potent dual inhibitors than quercetin against α-amylase and α-glucosidase, in addition to 3a, 3c, 3f and 5b-5f against α-amylase. Although none of the compounds demonstrated a higher efficiency than the reference inhibitors against COX-2 and LDHA, 3a and 3g were identified as the most active derivatives. Molecular docking studies were used to elucidate the binding affinities and binding interactions between the inhibitors and their target proteins. Compounds 3a and 3f showed cytotoxic activities, with IC50 values (µM) of 294.32 ± 8.41 and 383.5 ± 8.99 (LoVo), as well as 298.05 ± 13.26 and 323.59 ± 3.00 (HCT-116). The cytotoxicity mechanism of 3a and 3f could be attributed to the modulation of apoptosis regulators (Bax and Bcl-2), the activation of intrinsic and extrinsic apoptosis pathways via the upregulation of initiator caspases-8 and -9 as well as executioner caspase-3, and the arrest of LoVo and HCT-116 cell cycles in the G2/M and G1 phases, respectively. Lastly, the physicochemical, medicinal chemistry and ADMET properties of all compounds were predicted.

5.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37765031

RESUMO

The ameliorative effect of ethanolic extract of M. oleifera (MOEE) leaves in combination with curcumin against seizures, cognitive impairment, and oxidative stress in the molecular docking of PTZ-induced kindled rats was performed to predict the potential phytochemical effects of MOEE and curcumin against epilepsy. The effect of pretreatment with leaves of M. oleifera ethanolic extracts (MOEE) (250 mg/kg and 500 mg/kg, orally), curcumin (200 mg/kg and 300 mg/kg, orally), valproic acid used as a standard (100 mg/kg), and the combined effect of MOEE (250 mg/kg) and curcumin (200 mg/kg) at a low dose on Pentylenetetrazole was used for (PTZ)-induced kindling For the development of kindling, individual Wistar rats (male) were injected with pentyletetrazole (40 mg/kg, i.p.) on every alternate day. Molecular docking was performed by the Auto Dock 4.2 tool to merge the ligand orientations in the binding cavity. From the RCSB website, the crystal structure of human glutathione reductase (PDB ID: 3DK9) was obtained. Curcumin and M. oleifera ethanolic extracts (MOEE) showed dose-dependent effects. The combined effects of MOEE and curcumin leaves significantly improved the seizure score and decreased the number of myoclonic jerks compared with a standard dose of valproic acid. PTZ kindling induced significant oxidative stress and cognitive impairment, which was reversed by pretreatment with MOEE and curcumin. Glutathione reductase (GR) is an enzyme that plays a key role in the cellular control of reactive oxygen species (ROS). Therefore, activating GR can uplift antioxidant properties, which leads to the inhibition of ROS-induced cell death in the brain. The combination of the ethanolic extract of M. oleifera (MOEE) leaves and curcumin has shown better results than any other combination for antiepileptic effects by virtue of antioxidant effects. As per the docking study, chlorogenic acid and quercetin treated with acombination of curcumin have much more potential.

6.
Curr Mol Pharmacol ; 16(6): 629-639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36121084

RESUMO

OBJECTIVE: Cardiac ischemia-related myocardial damage has been considered a major reason for heart failure. We aimed to investigate the role of levosimendan (LEVO) in comparison to ramipril and sacubitril/valsartan (Sac/Val) in preventing damage associated with isoproterenol (ISO) induced myocardial infarction. METHODS: Myocardial infarction was induced by injecting subcutaneous isoproterenol (5 mg/kg once for 7 consecutive days) to establish an experimental heart failure model. Simultaneously, LEVO (1 mg/kg/day), ramipril (3mg/kg/day) and Sac/Val (68 mg/kg/day) suspension were administered orally for four weeks. RESULTS: We observed a significant correlation between ISO-induced ischemia with cardiac remodeling and alterations in myocardial architecture. LEVO, ramipril, and Sac/Val significantly prevented lipid peroxidation and damaged antioxidant enzymes like superoxide dismutase, catalase, glutathione and thioredoxin reductase. We also observed their ameliorative effects in myocardium's cardiac hypertrophy, evidenced by reduced heart weight to body weight ratio and transforming growth factor ß related collagen deposition. LEVO, ramipril, and Sac/Val also maintained cardiac biomarkers like lactate dehydrogenase, creatine kinase-MB, brain natriuretic peptide and cardiac Troponin-I, indicating reduced myocardial damage that was further demonstrated by histopathological examination. Decreased sarcoplasmic endoplasmic reticulum Ca2+ATPase2a and sodium-calcium exchanger-1 protein depletion after LEVO, ramipril, and Sac/Val administration indicated improved Ca2+ homeostasis during myocardial contractility. CONCLUSION: Our findings suggest that LEVO has comparable effects to ramipril, and Sac/Val in preventing myocardial damage via balancing oxidant-antioxidant system, decreased collagen deposition, reduced myocardial stress as well as improved Ca2+ homeostasis during myocardial contractility.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Simendana , Ramipril/efeitos adversos , Isoproterenol , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cálcio , Valsartana/farmacologia , Valsartana/uso terapêutico , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/patologia , Hemodinâmica , Colágeno/efeitos adversos
7.
ACS Omega ; 7(46): 42593-42606, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36440147

RESUMO

Ketoconazole (KETO) is the drug of choice to control local, systemic, and resistant types of fungal infections. Subcutaneous (sub-Q) delivery offers several benefits. The present study investigated the sub-Q delivery of KETO using HSPiP software based on optimized concentrations of dimethylacetamide (DMA) in binary solvents (DMA + water), in vitro cellular uptake (J774A.1) assays, cellular toxicity (L929), and in vitro hemolysis studies. Results showed that the estimated permeation coefficient (9.6 × 10-3 cm/h) and diffusion coefficient (3.9 × 10-3 cm2/h) of KETO (22.3 mg) in KF3 (300 mg of DMA + water) across EpiDerm were relatively higher as compared to the other formulations [KF1 (11.2 and 150 mg as KETO and DMA, respectively) and KF2 [(22.3 and 300 mg as KETO and DMA, respectively)] due to the increased content of DMA and KETO. HSPiP simulated and predicted the impact of constant and variable diffusion coefficients on the percent drug absorption across EpiDerm and the time needed to achieve equilibrium. The concentration-dependent diffusion coefficient fed into HSPiP predicted that the drug absorption and permeation values were linearly dependent on the square root of time. The HSPiP predicted permeation flux values from KF3, KF2, and KF1 across the EpiDerm were 4.07 × 10-6, 4.01 × 10-6, and 1.1 × 10-6 g/cm2/s, respectively, at respective D range values. The selected K30G (324 mOsm/Kg) showed an optimal pH (6.9) and minimum drug loss (0.01%) over a period of 1 month at room temperature. KG30 was found to be less toxic to normal L292 cells and caused maximum cytotoxicity to candida cells residing within infected macrophage cells (J774A.1 incubated for 24 h), which was attributed to the slow diffusion of K30G compared to DS (the drug solution with an equivalent concentration). KG30 elicited substantial internalization with candida albicans (MTCC 4748) compared to the control group (24 h). Lastly, in vitro hemolysis studies (1 and 5 µg/mL) corroborated the safety of K30G for sub-Q delivery. Therefore, this new formulation and approach for delivering KETO is a promising alternative to conventional products to control fungal infections and, thus, should be further studied in vivo.

8.
Int J Biol Macromol ; 217: 457-469, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35798082

RESUMO

With the advent of drug delivery, various polymeric materials are being explored to fabricate numerous nanocarriers. Each polymer is associated with a few characteristics attributes which further facilitate its usage in drug delivery. One such polymer is chitosan (CS), which is extensively employed to deliver a variety of drugs to various targets, especially to cancer cells. The desired properties like biological origin, bio-adhesive, biocompatibility, the scope of chemical modification, biodegradability and controlled drug release make it a highly rough after polymer in pharmaceutical nanotechnology. The present review attempts to compile various chemical modifications on CS and showcase the outcomes of the derived nanocarriers, especially in cancer chemotherapy and drug delivery.


Assuntos
Antineoplásicos , Quitosana , Nanopartículas , Antineoplásicos/química , Quitosana/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polímeros
9.
Appl Biochem Biotechnol ; 194(12): 5918-5944, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35838886

RESUMO

Novel SARS-CoV-2 claimed a large number of human lives. The main proteins for viral entry into host cells are SARS-CoV-2 spike glycoprotein (PDB ID: 6VYB) and spike receptor-binding domain bound with ACE2 (spike RBD-ACE2; PDB ID: 6M0J). Currently, specific therapies are lacking globally. This study was designed to investigate the bioactive components from Moringa oleifera leaf (MOL) extract by gas chromatography-mass spectroscopy (GC-MS) and their binding interactions with spike glycoprotein and spike RBD-ACE2 protein through computational analysis. GC-MS-based analysis unveiled the presence of thirty-seven bioactive components in MOL extract, viz. polyphenols, fatty acids, terpenes/triterpenes, phytosterols/steroids, and aliphatic hydrocarbons. These bioactive phytoconstituents showed potential binding with SARS-CoV-2 spike glycoprotein and spike RBD-ACE2 protein through the AutoDock 4.2 tool. Further by using AutoDock 4.2 and AutoDock Vina, the top sixteen hits (binding energy ≥ - 6.0 kcal/mol) were selected, and these might be considered as active biomolecules. Moreover, molecular dynamics simulation was determined by the Desmond module. Interestingly two biomolecules, namely ß-tocopherol with spike glycoprotein and ß-sitosterol with spike RBD-ACE2, displayed the best interacting complexes and low deviations during 100-ns simulation, implying their strong stability and compactness. Remarkably, both ß-tocopherol and ß-sitosterol also showed the drug- likeness with no predicted toxicity. In conclusion, these findings suggested that both compounds ß-tocopherol and ß-sitosterol may be developed as anti-SARS-CoV-2 drugs. The current findings of in silico approach need to be optimized using in vitro and clinical studies to prove the effectiveness of phytomolecules against SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Moringa oleifera , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , beta-Tocoferol , Compostos Fitoquímicos/farmacologia , Folhas de Planta , Simulação de Dinâmica Molecular , Extratos Vegetais/farmacologia , Ligação Proteica
10.
Drug Deliv ; 29(1): 1512-1522, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35549506

RESUMO

The goal of this work was to improve the aqueous solubility and dissolution rate of eprosartan mesylate by preparing inclusion complex of drug with ß-cyclodextrin (ß-CD) by microwave technique. In order to determine the solubility of eprosartan, phase solubility was determined and dissolution study was also conducted. Further, analytical techniques for instance, particle size distribution, differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy were used for the characterization of inclusion complex. In addition, the binding pattern of eprosartan with the ß-CD was investigated by molecular modeling study. Phase solubility study revealed that approximately 4.48 folds improvement in the solubility of drug was noted with ß-CD (10 mM). The estimated stability constant (Kc) values for eprosartan:ß-CD binary mixture was found to be 280.78 M-1. The prepared inclusion complex of drug with ß-CD presented better drug release profile (62.96 ± 2.01% in 1 h) as compared to their physical mixture (41.41 ± 1.77% in 1 h) or drug per se (29.97 ± 3.13%). The inclusion complex demonstrated different features and properties from pure drug, and we inferred that this could be due to the inclusion of drug into cyclodextrin cavity that confirmed by different analytical method. Molecular modeling study demonstrated a good affinity of eprosartan to entangle to ß-CD. The outcomes have shown that guest molecule has many significant interactions with the host molecule. These observations are very interesting and may be a valuable approach to improve the solubility and in turn the bioavailability of eprosartan.


Assuntos
Micro-Ondas , beta-Ciclodextrinas , Acrilatos , Varredura Diferencial de Calorimetria , Imidazóis , Mesilatos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Tecnologia , Tiofenos , Difração de Raios X , beta-Ciclodextrinas/química
11.
Anticancer Agents Med Chem ; 22(12): 2303-2309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35016597

RESUMO

AIMS: The study aims to synthesize hybrid molecules containing pyrazole and aryldiazenyl/arylhydrazono fragments with promising anticancer activity. BACKGROUND: The clinical effectiveness of anticancer drugs is limited by their adverse side effects and patient resistance. Therefore, the development of safer classes of drugs through rational drug design is imperative. OBJECTIVE: Considering the anticancer potential of the pyrazole moiety, the study was carried out with the objective of synthesizing some hybrid pyrazole derivatives with anticancer potential. METHODS: The anticancer potential of these pyrazolyl analogues were evaluated by sulforhodamine B assay using three cancer cell lines MCF-7, HepG2, and HCT-116. RESULTS: HCT-116 was the most sensitive cell line against these pyrazolyl analogues. Among these newly synthesised derivatives, 1-(4-((4-bromophenyl)diazenyl)-3,5-dimethyl-1H-pyrazol-1-yl)-2-(naphthalen-2-yloxy)ethan-1-one (5e) emerged as a promising anticancer agent (IC50 3.6-24.6 µM), having a xanthine oxidase inhibitory effect (IC50 10.87 µM). To obtain further insights into the binding interactions of these molecules, molecular docking studies were also carried out. CONCLUSION: In summary, our findings suggest that these hybrid pyrazolyl derivatives can be considered as potential lead molecules for anticancer agents.


Assuntos
Antineoplásicos , Xantina Oxidase , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazóis/química , Pirazóis/farmacologia , Relação Estrutura-Atividade , Xantina Oxidase/farmacologia
12.
J Ethnopharmacol ; 282: 114597, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492318

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cuscuta reflexa Roxb. (C. reflexa) is a well-known traditional herbal plant, with numerous inherent therapeutic potentials including anticancer, antitumor, antibacterial, analgesic, anthelmintic, laxative and others. Moreover, the anticancer and antitumor potentials of this herb are ongoing with several trails, thus an attempt was made to assess the anticancer and hepatoprotective potentials of traditional C. reflexa herbs. METHOD: The dried ethanolic extract of C. reflexa was tested for acute oral toxicity in the treated animals subsequently their behavioral, neurological, and autonomic profiles changes were observed. The preliminary anti-cancer effects of extracts against 1, 2- Dimethyl hydrazine (DMH) induced animals were assessed through barium enema X-ray, colonoscopy, and Aberrant crypt foci (ACF) studies. The blood samples of the animals (treated and untreated) were collected and their in-vitro histological parameters were evaluated by the experienced technician. RESULTS: It was observed that C. reflexa significantly reduced Disease activity indexing (DAI) level and ACF counting, as well as demonstrated similar activity as of the standard drug 5-Fluorouracil (5-FU). Histopathological results revealed that the apoptotic bodies decreased in the DMH-induced group (group II) during cancer progression while in 5-FU treated (group III) and C. reflexa treated (group IV and V) animals the apoptotic bodies were increased. Inversely, the mitotic bodies increased in group II animals and reduced in group III, IV, and V animals. In the colonic section, DMH-induced cancer assay exhibited significant effects on the levels of hemoglobin, Packed cell volume (PCV), Red blood cell (RBC) counts, Mean corpuscular hemoglobin concentration (MCHC), Mean corpuscular volume (MCV), and Mean cell hemoglobin (MCH), and was found to be less in group II animals whereas administration of C. reflexa efficiently recovered back the loss probably by healing the colon damage/depletion of cancer progression. Moreover, compared to the group II animals, the neutrophil count was within the normal range in C. reflexa administered group. CONCLUSIONS: In the present study, the major hematological parameters significantly increased within DMH treated animals and exhibited extensive damage in the hepatic regions. Moreover, the histopathological findings demonstrated that the C. reflexa extracts potentially reduced the cell proliferation, with no toxicity. The C. reflexa extracts exhibited impending anti-cancer activity as well as protected the hepatic cells and thus could be potentially used in the management of colon or colorectal cancer and hepatic impairments.


Assuntos
Focos de Criptas Aberrantes , Neoplasias do Colo , Cuscuta , Testes de Toxicidade/métodos , Focos de Criptas Aberrantes/tratamento farmacológico , Focos de Criptas Aberrantes/patologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colo/diagnóstico por imagem , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Monitoramento de Medicamentos/métodos , Medicamentos de Ervas Chinesas/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Camundongos , Extratos Vegetais/farmacologia
13.
J Oncol ; 2021: 5691982, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326873

RESUMO

BACKGROUND: Pyrazoles are an interesting class of compounds showing potent anticancer activities. Our previous studies have demonstrated the potent anticancer activity of pyrazole analogues. Therefore, we focused on developing anticancer agents through structure optimization of the pyrazolyl lead molecule. METHODS: The pyrazole derivatives were prepared by the appropriate synthetic protocols. The antiproliferative activities were evaluated using a sulforhodamine B assay against three cancer cell lines. In vitro and in silico molecular docking studies employing xanthine oxidase were used to explore the mechanism by which pyrazole derivatives exert anticancer effects. RESULTS: One of the pyrazole derivatives demonstrated the greatest promise as an anticancer agent against the human colon cancer cell line (IC50 4.2 µM), with a potent xanthine oxidase inhibitory activity (IC50 0.83 µM). CONCLUSION: In summary, our findings suggest that these pyrazolyl analogues containing a pyridine nucleus could serve as a promising lead molecule in the development of novel anticancer agents.

14.
Drug Dev Ind Pharm ; 46(9): 1524-1534, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32808552

RESUMO

This research planned to ameliorate an aqueous solubility and dissolution of Curcumin (CUR) by the formulation of inclusion complex with ß-cyclodextrin (ß-CD) and polyvinylpyrrolidone (PVP). The phase solubility study was performed to assess the solubility of CUR. The prepared CUR complex assessed for dissolution study, physicochemical evaluation, in-vitro antioxidant activity, molecular modeling, and anti-inflammatory assessment. The pivotal findings of phase-solubility studies demonstrate apparent stability constant (Kc) and complexation efficiency (CE) values for CUR-ß-CD and CUR-ß-CD-PVP complex was 175.4 M -1, 1.15% and 833.3.2 M -1 and 5.21%, respectively. The characterization results revealed amorphization of crystalline state (CUR) into amorphous state. The maximum drug release found with the ternary CUR complex (F7), i.e. 45.41 ± 3.78% in 6 h study. The chemical shift in the NMR supports that the aromatic ring of CUR is completely complexed inside the ß-CD cavity. The antioxidant activity of pure CUR was found to be 58.02 ± 2.21% and CUR ternary complex (F7) showed significantly higher activity to 96.02 ± 2.46%. The in-vivo effect of CUR complex (F7) was also found significantly higher than that of pure CUR. The molecular modeling study depicted that PVP increased the stability of the ternary complex by forming the link between CUR and ß-CD. Thus, the ternary inclusion complex of CUR-ß-CD-PVP could contribute as an innovative outcome in the enhancement of solubility and in-vivo activity.


Assuntos
Anti-Inflamatórios/farmacologia , Curcumina , Povidona/química , beta-Ciclodextrinas , Anti-Inflamatórios/química , Simulação de Acoplamento Molecular , Solubilidade
15.
Eur J Med Chem ; 166: 417-431, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30739824

RESUMO

Aurones are very simple, promising anticancer lead molecules containing three rings (A, B and C). A very slight structural variation in the aurones elicits diverse affinity and specificity towards different molecular targets. The present review discusses the design, discovery and development of natural and synthetic aurones as small molecule anticancer agents. Detailed structure-activity relationship and intermolecular interactions at different targets are also discussed. Due to their rare occurrence in nature and minimal mention in literature, the anticancer potential of aurones is rather recent but in constant progress.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Benzofuranos/química , Benzofuranos/farmacologia , Descoberta de Drogas/métodos , Animais , Humanos
16.
Bioorg Chem ; 77: 74-83, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29334622

RESUMO

A series of new hybrid benzothiazole containing pyridazinones derivatives were designed and synthesized fulfilling all the pharmacophoric requirements essential for the anticonvulsant activity. In-silico and in vitro studies revealed that some of these hybrid derivatives demonstrated admirable GABA AT inhibitory activity. An attempt has also been made to validate the results of in vitro GABA AT inhibition of the most potent compound SPS-5F (IC50 9.10 µM) through in vivo anticonvulsant screening. Compound SPS-5F administration significantly increases the whole brain GABA level, might be through the inhibition of GABA AT enzyme.


Assuntos
Anticonvulsivantes/farmacologia , Desenho de Fármacos , Piridazinas/farmacologia , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Encéfalo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade
17.
Anticancer Agents Med Chem ; 18(1): 121-138, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28425854

RESUMO

BACKGROUND: 1,3,4-Oxadiazole heterocycles possess a broad spectrum of biological activities. They were reported as potent cytotoxic agents and tubulin inhibitors; hence it is of great interest to explore new oxadiazoles as cytotoxic agents targeting tubulin polymerization. OBJECTIVE: Two new series of oxadiazoles (5a-h and 12a-h) were synthesized, structurally related to the heterocyclic linked aryl core of IMC-038525, NSC 776715, and NSC 776716, with further modification by incorporating methylene linker. METHOD: The 2,5-disubstituted-1,3,4-oxadiazoles (5a-h and 12a-h) were synthesized by refluxing an equimolar mixture of the intermediates [(4) and (8a-d)] and aromatic aldehydes in water-ethanol system using sodium bisulphite catalyst. The cytotoxicity evaluation was carried out according to the National Cancer Institute (NCI US) Protocol, while the tubulin polymerization assay kits from Cytoskeleton ™(bk011p) was used to perform an in vitro tubulin polymerization assay. RESULTS: 2-(5-{[(4-Chlorophenyl)amino]methyl}-1,3,4-oxadiazol-2-yl)phenol (5f) and 2-[(2,4-dichlorophenoxy) methyl]-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole (12c) showed maximum cytotoxicity with the mean percent growth inhibitions (GIs) of 71.56 and 72.68 respectively at 10 µM drug concentrations. Both the compounds (5f and 12c) showed superior cytotoxicity than clinically prevalent anticancer drugs, Imatinib and Gefitinib in one dose assay. The compound 12c showed promising results in five dose assay, with GI50 values varies between 1.61 and >100 µM. Furthermore, the compounds, 5f and 12c also inhibited the polymerization of tubulin with, an IC50 of 2.8 and 2.2 µM, respectively. CONCLUSION: The oxadiazoles reported herein are tubulin inhibitors and cytotoxic agents. These findings will be helpful in future drug design of more potent tubulin inhibitor cytotoxic agents.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Simulação de Acoplamento Molecular , Oxidiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade
18.
Acta Pharm Sin B ; 7(4): 479-484, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28752033

RESUMO

Dengue is a severe mosquito-borne viral infection causing half a million deaths annually. Dengue virus NS2B/NS3 protease is a validated target for anti-dengue drug design. A series of hitherto unreported 3,5-bis(arylidene)-4-piperidones analogues 4a-4j were synthesized and screened in silico against DENV2 NS2B/NS3 protease to elucidate their binding mechanism and orientation around the active sites. Results were validated through an in vitro DENV2 NS2B/NS3 protease assay using a fluorogenic Boc-Gly-Arg-Arg-AMC substrate. Nitro derivatives of 3,5-bis(arylidene)-4-piperidones (4e and 4j) emerged as promising lead molecules for novel protease inhibitors with an IC50 of 15.22 and 16.23 µmol/L, respectively, compared to the standard, panduratin A, having IC50 of 57.28 µmol/L.

19.
Eur J Med Chem ; 123: 236-255, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27484512

RESUMO

Coumarins have received a considerable attention in the last three decades as a lead structures for the discovery of orally bioavailable non-peptidic antiviral agents. A lot of structurally diverse coumarins analogues were found to display remarkable array of affinity with the different molecular targets for antiviral agents and slight modifications around the central motif result in pronounced changes in its antiviral spectrum. This manuscript thoroughly reviews the design, discovery and structure-activity relationship studies of the coumarin analogues as antiviral agents focusing mainly on lead optimization and its development into clinical candidates.


Assuntos
Antivirais/farmacologia , Cumarínicos/farmacologia , Antivirais/química , Cumarínicos/química , Humanos , Terapia de Alvo Molecular
20.
Arch Pharm (Weinheim) ; 347(12): 958-68, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25251582

RESUMO

New hydrazone incorporated triazines were designed and synthesized using an appropriate synthetic route with regard to essential pharmacophores, and evaluated for their anticonvulsant activity through maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole-induced seizure (scPTZ) screenings. Among the tested compounds, 4-[{2-(5-(3-chlorobenzyl)-3-phenyl-1,2,4-triazine-6-yl)hydrazono}methyl]-N,N-dimethylaniline 6k (MES ED50 54.31, scPTZ ED50 92.01) and 4-[{2-(5-(4-chlorobenzyl)-3-phenyl-1,2,4-triazine-6-yl)hydrazono}methyl]-N,N-dimethylaniline 6r (MES ED50 46.05, scPTZ ED50 83.90) emerged as the most active anticonvulsant agents having GABAergic effects. Compounds 6k and 6r also showed lesser CNS depressant effect than the standard drug carbamazepine. To obtain further insights into the binding interactions of these molecules, molecular docking studies were carried out.


Assuntos
Anticonvulsivantes/síntese química , Anticonvulsivantes/farmacologia , Desenho de Fármacos , Hidrazonas/síntese química , Hidrazonas/farmacologia , Convulsões/prevenção & controle , Triazinas/síntese química , Triazinas/farmacologia , 4-Aminobutirato Transaminase/química , 4-Aminobutirato Transaminase/metabolismo , Animais , Anticonvulsivantes/metabolismo , Sítios de Ligação , Domínio Catalítico , Desenho Assistido por Computador , Modelos Animais de Doenças , Eletrochoque , Feminino , Humanos , Hidrazonas/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pentilenotetrazol , Ligação Proteica , Conformação Proteica , Convulsões/etiologia , Convulsões/fisiopatologia , Relação Estrutura-Atividade , Triazinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA