Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
2.
ACS Omega ; 9(26): 29069, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38973866

RESUMO

[This corrects the article DOI: 10.1021/acsomega.1c06890.].

4.
Proteomics Clin Appl ; : e2300136, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38571380

RESUMO

BACKGROUND: Breast cancer (BC) is the second leading cause of cancer-related deaths among women, primarily due to metastases to other organs rather than the primary tumor. METHODS: In this study, a comprehensive analysis of plasma proteomics and metabolomics was conducted on a cohort of 51 BC patients. Potential biomarkers were screened by the Least Absolute Shrinkage and Selection Operator (LASSO) regression and Random Forest algorithm. Additionally, enzyme-linked immunosorbent assay (ELISA) kits and untargeted metabolomics were utilized to validate the prognostic biomarkers in an independent cohort. RESULTS: In the study, extracellular matrix (ECM)-related functional enrichments were observed to be enriched in BC cases with bone metastases. Proteins dysregulated in retinol metabolism in liver metastases and leukocyte transendothelial migration in lung metastases were also identified. Machine learning models identified specific biomarker panels for each metastasis type, achieving high diagnostic accuracy with area under the curve (AUC) of 0.955 for bone, 0.941 for liver, and 0.989 for lung metastases. CONCLUSIONS: For bone metastasis, biomarkers such as leucyl-tryptophan, LysoPC(P-16:0/0:0), FN1, and HSPG2 have been validated. dUDP, LPE(18:1/0:0), and aspartylphenylalanine have been confirmed for liver metastasis. For lung metastasis, dUDP, testosterone sulfate, and PE(14:0/20:5) have been established.

5.
Curr Probl Cardiol ; 49(3): 102390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232927

RESUMO

Long non-coding RNAs (lncRNAs) are RNA molecules that regulate gene expression at several levels, including transcriptional, post-transcriptional, and translational. They have a length of more than 200 nucleotides and cannot code. Many human diseases have been linked to aberrant lncRNA expression, highlighting the need for a better knowledge of disease etiology to drive improvements in diagnostic, prognostic, and therapeutic methods. Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. LncRNAs play an essential role in the complex process of heart formation, and their abnormalities have been associated with several CVDs. This Review article looks at the roles and relationships of long non-coding RNAs (lncRNAs) in a wide range of CVDs, such as heart failure, myocardial infarction, atherosclerosis, and cardiac hypertrophy. In addition, the review delves into the possible uses of lncRNAs in diagnostics, prognosis, and clinical treatments of cardiovascular diseases. Additionally, it considers the field's future prospects while examining how lncRNAs might be altered and its clinical applications.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Infarto do Miocárdio , RNA Longo não Codificante , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Prognóstico
7.
Biomed Pharmacother ; 165: 115240, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37531779

RESUMO

BACKGROUND: Oxidative stress and inflammation play crucial roles in macro/microvascular complications. Phenolic compounds and their derivatives show promise as therapeutic agents for diseases like cancer, metabolic disorders, and cardiovascular diseases. With their antioxidant and anti-inflammatory properties, these compounds hold potential for mitigating vascular complications and improving overall health. METHODOLOGY: This study aimed to assess the therapeutic potential of five 2-methoxy phenol derivatives (T2, T5, T6, T7, and T8) as antioxidants, anti-inflammatory agents, and vasorelaxants using in vitro, in silico, and in vivo approaches. RESULTS: Among all, T2 exhibited substantial antioxidant potential against 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals with IC50 (27.97 µg/mL), nitric oxide (NO) radicals (IC50 = 34.36 µg/mL), hydroxyl (OH) radicals (IC50 = 34.83 µg/mL) and Iron chelation (IC50 = 24.32 µg/mL). Molecular docking analysis confirms that all derivatives, particularly T2, exhibit favorable binding energies with the target proteins, ACE (-7.7 Kcal/mol), ECE-1 (-7.9 Kcal/mol), and COX-1 (-7.8 Kcal/mol). All of the compounds demonstrated satisfactory physicochemical and pharmacokinetic characteristics, and showed minimal to no toxicity during in silico, in vitro, and in vivo assessments. In isolated aortic rings from Sprague Dawley rats, pre-contracted with high K+ (80 mM), T2 induced vasorelaxation in dose dependent manner and shifted calcium response curves to the right as compared to verapamil. T2 also showed substantial platelet aggregation inhibition in a dose dependent manner with IC50 21.29 µM. All derivatives except T7 exhibited significant conservation of endogenous antioxidants i.e. catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and reduced glutathione (GSH) and significantly suppressed serum levels of inflammatory markers i.e. nitric oxide (NO), peroxides (TBARS), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2). CONCLUSION: The study concludes that T2 has significant antioxidant potential and vasorelaxant effects with adequate pharmacokinetics, making it a promising lead compound for further molecular investigation in cardiovascular disorders.


Assuntos
Antioxidantes , Óxido Nítrico , Ratos , Animais , Antioxidantes/uso terapêutico , Óxido Nítrico/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Ratos Sprague-Dawley , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Fenóis/farmacologia
8.
PLoS One ; 18(7): e0287517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440558

RESUMO

Neuropathic pain has been characterized as chronic pain resulting from pathological damage to the sensorimotor system. Because of its complex nature, it remains refractory to most of the therapeutic interventions, and surgical intervention and physiotherapy alongside steroidal treatments remain the only treatment protocols with limited success, hence solidifying the need to find efficacious therapeutic alternatives. Emodin was used as a post-treatment for its potential to be neuroprotective in the treatment of chronic constriction injury-induced NP. The first day following surgery, Emodin treatment began, and it lasted until the 21st day. On days 3, 7, 14 and 21, all behavioral investigations were conducted. The sciatic nerve and spinal cord were extracted for further molecular examination. Emodin elevated response latency, was able to delay the onset of mechanical hyperalgesia in rats on days 7, 14, and 21 and reduced the CCI-induced paw deformation. Emodin treatment significantly reduced lipid peroxidation and NO levels while restoring the GST, GSH and catalase. It significantly improved the disorientation of the sciatic nerve and spinal cord confirmed by H & E staining and reduced inflammatory markers as observed by the quantification of COX-2, TNF-α, p-NFκb and up-regulated PPAR-γ levels by ELISA and PCR. According to the findings, Emodin has antinociceptive and anti-hyperalgesic properties, which reduced pain perception and inflammation. We also suggested the involvement of PPAR-γ pathway in the therapeutic potential of emodin in chronic nerve injury.


Assuntos
Emodina , Neuralgia , Ratos , Animais , Emodina/farmacologia , Emodina/uso terapêutico , Emodina/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Constrição , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/metabolismo , Hiperalgesia/metabolismo , Nervo Isquiático/lesões , Inflamação/patologia , Medula Espinal/metabolismo
9.
Front Immunol ; 14: 1166487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138860

RESUMO

In the last ten years, it has become increasingly clear that tumor-infiltrating myeloid cells drive not just carcinogenesis via cancer-related inflammatory processes, but also tumor development, invasion, and metastasis. Tumor-associated macrophages (TAMs) in particular are the most common kind of leucocyte in many malignancies and play a crucial role in establishing a favorable microenvironment for tumor cells. Tumor-associated macrophage (TAM) is vital as the primary immune cell subset in the tumor microenvironment (TME).In order to proliferate and spread to new locations, tumors need to be able to hide from the immune system by creating an immune-suppressive environment. Because of the existence of pro-tumoral TAMs, conventional therapies like chemotherapy and radiotherapy often fail to restrain cancer growth. These cells are also to blame for the failure of innovative immunotherapies premised on immune-checkpoint suppression. Understanding the series of metabolic changes and functional plasticity experienced by TAMs in the complex TME will help to use TAMs as a target for tumor immunotherapy and develop more effective tumor treatment strategies. This review summarizes the latest research on the TAMs functional status, metabolic changes and focuses on the targeted therapy in solid tumors.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/patologia , Macrófagos , Imunoterapia , Carcinogênese/metabolismo , Microambiente Tumoral
10.
Front Immunol ; 14: 1131874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228619

RESUMO

The tumor microenvironment (TME), which includes both cellular and non-cellular elements, is now recognized as one of the major regulators of the development of primary tumors, the metastasis of which occurs to specific organs, and the response to therapy. Development of immunotherapy and targeted therapies have increased knowledge of cancer-related inflammation Since the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCB) limit immune cells from entering from the periphery, it has long been considered an immunological refuge. Thus, tumor cells that make their way "to the brain were believed to be protected from the body's normal mechanisms of monitoring and eliminating them. In this process, the microenvironment and tumor cells at different stages interact and depend on each other to form the basis of the evolution of tumor brain metastases. This paper focuses on the pathogenesis, microenvironmental changes, and new treatment methods of different types of brain metastases. Through the systematic review and summary from macro to micro, the occurrence and development rules and key driving factors of the disease are revealed, and the clinical precision medicine of brain metastases is comprehensively promoted. Recent research has shed light on the potential of TME-targeted and potential treatments for treating Brain metastases, and we'll use that knowledge to discuss the advantages and disadvantages of these approaches.


Assuntos
Neoplasias Encefálicas , Microambiente Tumoral , Humanos , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Barreira Hematoencefálica/patologia , Imunoterapia/efeitos adversos
11.
Biomed Pharmacother ; 164: 114946, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37257229

RESUMO

Guaiane-type sesquiterpenoids are most prevalent in the genus Cinnamomum. Hence this study investigates the structures, anti-nociceptive and IL-6 targeted anti-inflammatory potential of three novels C-14 guaiane-type sesquiterpenoids and two new monoterpenoids, isolated from Cinnamomum migao. The structures were precisely confirmed and characterized through the modern chromatographic and spectroscopic techniques of HRESIMS, 1D NMR, 2D NMR, experimental circular dichroism (ECD), and calculated (ECD). Novel sesquiterpenoids 1 and 2 exhibited significant anti-inflammatory activities against the NO production and pro-inflammatory cytokines. Their IC50 values were determined as 9.52 and 13.42 µΜ against IL-6 mRNA, respectively. Similarly, subcutaneous injection of n-BuT and EA extracts showed a dose-dependent suppression of formalin-induced tonic biting/licking responses during the tonic antinociceptive phase. Furthermore, absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of guaiane-type sesquiterpenoids 1 and 2 displayed that both compounds have a high level of GIT absorption, with a high zone of safety for cardiac and hepatotoxicity and no inhibition of cytochromes. In addition, molecular docking and simulation studies strengthen the anti-inflammatory potential of sesquiterpene 2 which showed a good binding affinity with IL-6 protein. Overall the inclusive results showed that the extracts and newly isolated guaiane-type sesquiterpenoids from C. migao will provide new evidence for the traditional use of this species to treat inflammation and nociception.


Assuntos
Interleucina-6 , Sesquiterpenos , Simulação de Acoplamento Molecular , Estrutura Molecular , Anti-Inflamatórios/farmacologia , Sesquiterpenos de Guaiano/farmacologia , Extratos Vegetais , Sesquiterpenos/química
12.
Molecules ; 28(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36838559

RESUMO

Evolved over eons to encode biological assays, plants-derived natural products are still the first dawn of drugs. Most researchers have focused on natural compounds derived from commonly used Pimpinella species, such as P. anisum, P. thellungiana, P. saxifrage, and P. brachycarpa, to investigate their antioxidant, antibacterial, and anti-inflammatory properties. Ethnopharmacological studies demonstrated that the genus Pimpinella has the homology characteristics of medicine and food and mainly in the therapy of gastrointestinal dysfunction, respiratory diseases, deworming, and diuresis. The natural product investigation of Pimpinella spp. revealed numerous natural products containing phenylpropanoids, terpenoids, flavonoids, coumarins, sterols, and organic acids. These natural products have the potential to provide future drugs against crucial diseases, such as cancer, hypertension, microbial and insectile infections, and severe inflammations. It is an upcoming field of research to probe a novel and pharmaceutically clinical value on compounds from the genus Pimpinella. In this review, we attempt to summarize the present knowledge on the traditional applications, phytochemistry, and pharmacology of more than twenty-five species of the genus Pimpinella.


Assuntos
Produtos Biológicos , Pimpinella , Pimpinella/química , Etnofarmacologia , Extratos Vegetais/química , Terpenos , Compostos Fitoquímicos/uso terapêutico
13.
Bioengineering (Basel) ; 10(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671672

RESUMO

Pharmacological strategies to lower the viral load among patients suffering from severe diseases were researched in great detail during the SARS-CoV-2 outbreak. The viral protease Mpro (3CLpro) is necessary for viral replication and is among the main therapeutic targets proposed, thus far. To stop the pandemic from spreading, researchers are working to find more effective Mpro inhibitors against SARS-CoV-2. The 33.8 kDa Mpro protease of SARS-CoV-2, being a nonhuman homologue, has the possibility of being utilized as a therapeutic target against coronaviruses. To develop drug-like compounds capable of preventing the replication of SARS-main CoV-2's protease (Mpro), a computer-aided drug design (CADD) approach is extremely viable. Using MOE, structure-based virtual screening (SBVS) of in-house and commercial databases was carried out using SARS-CoV-2 proteins. The most promising hits obtained during virtual screening (VS) were put through molecular docking with the help of MOE. The virtual screening yielded 3/5 hits (in-house database) and 56/66 hits (commercial databases). Finally, 3/5 hits (in-house database), 3/5 hits (ZINC database), and 2/7 hits (ChemBridge database) were chosen as potent lead compounds using various scaffolds due to their considerable binding affinity with Mpro protein. The outcomes of SBVS were then validated using an analysis based on molecular dynamics simulation (MDS). The complexes' stability was tested using MDS and post-MDS. The most promising candidates were found to exhibit a high capacity for fitting into the protein-binding pocket and interacting with the catalytic dyad. At least one of the scaffolds selected will possibly prove useful for future research. However, further scientific confirmation in the form of preclinical and clinical research is required before implementation.

14.
Toxics ; 10(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36548549

RESUMO

Increased environmental pollution, urbanization, and a wide variety of anthropogenic activities have led to the release of toxic pollutants into the environment, including heavy metals (HMs). It has been found that increasing concentrations of HMs lead to toxicity, mineral imbalances, and serious diseases, which are occurring more and more frequently. Therefore, testing has become imperative to detect these deficiencies in a timely manner. The detection of traces of HMs, especially toxic ones, in human tissues, various biological fluids, or hair is a complex, high-precision analysis that enables early diagnosis, addressing people under constant stress or exposed to a toxic environment; the test also targets people who have died in suspicious circumstances. Tissue mineral analysis (TMA) determines the concentration of toxic minerals/metals at the intracellular level and can therefore determine correlations between measured concentrations and imbalances in the body. Framing the already-published information on the topic, this review aimed to explore the toxicity of HMs to human health, the harmful effects of their accumulation, the advantages vs. the disadvantages of choosing different biological fluids/tissues/organs necessary for the quantitative measurement of HM in the human body, as well as the choice of the optimal method, correlated with the purpose of the analysis.

15.
Bioengineering (Basel) ; 9(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36550965

RESUMO

Low temperatures have a negative effect on plant development. Plants that are exposed to cold temperatures undergo a cascade of physiological, biochemical, and molecular changes that activate several genes, transcription factors, and regulatory pathways. In this review, the physiological, biochemical, and molecular mechanisms of Camellia sinensis have been discussed. Calmodulin binding transcription activator (CAMTAs) by molecular means including transcription is one of the novel genes for plants' adaptation to different abiotic stresses, including low temperatures. Therefore, the role of CAMTAs in different plants has been discussed. The number of CAMTAs genes discussed here are playing a significant role in plants' adaptation to abiotic stress. The illustrated diagrams representing the mode of action of calcium (Ca2+) with CAMTAs have also been discussed. In short, Ca2+ channels or Ca2+ pumps trigger and induce the Ca2+ signatures in plant cells during abiotic stressors, including low temperatures. Ca2+ signatures act with CAMTAs in plant cells and are ultimately decoded by Ca2+sensors. To the best of our knowledge, this is the first review reporting CAMAT's current progress and potential role in C. sinensis, and this study opens a new road for researchers adapting tea plants to abiotic stress.

16.
Front Pharmacol ; 13: 1067697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506532

RESUMO

Introduction: This study aims at the biological profiling of Allium sativum, Zingiber officinale, Nigella sativa, Curcuma longa, Mentha piperita, Withania somnifera, Azadirachta indica, and Lawsonia inermis as alternatives against onychomycosis to combat the treatment challenges. Methods: An extract library of aqueous (DW), ethyl acetate (EA), and methanol (M) extracts was subjected to phytochemical and antioxidant colorimetric assays to gauge the ameliorating role of extracts against oxidative stress. RP-HPLC quantified therapeutically significant polyphenols. Antifungal potential (disc diffusion and broth dilution) against filamentous (dermatophytes and non-dermatophytes) and non-filamentous fungi (yeasts; Candida albicans), synergistic interactions (checkerboard method) with terbinafine and amphotericin-B against resistant clinical isolates of dermatophytes (Trichophyton rubrum and Trichophyton tonsurans) and non-dermatophytes (Aspergillus spp., Fusarium dimerum, and Rhizopus arrhizus), time-kill kinetics, and protein estimation (Bradford method) were performed to evaluate the potential of extracts against onychomycosis. Results: The highest total phenolic and flavonoid content along with noteworthy antioxidant capacity, reducing power, and a substantial radical scavenging activity was recorded for the extracts of Z. officinale. Significant polyphenolics quantified by RP-HPLC included rutin (35.71 ± 0.23 µg/mgE), gallic acid (50.17 ± 0.22 µg/mgE), catechin (93.04 ± 0.43 µg/mgE), syringic acid (55.63 ± 0.35 µg/mgE), emodin (246.32 ± 0.44 µg/mgE), luteolin (78.43 ± 0.18 µg/mgE), myricetin (29.44 ± 0.13 µg/mgE), and quercetin (97.45 ± 0.22 µg/mgE). Extracts presented prominent antifungal activity against dermatophytes and non-dermatophytes (MIC-31.25 µg/ml). The checkerboard method showed synergism with 4- and 8-fold reductions in the MICs of A. sativum, Z. officinale, M. piperita, L. inermis, and C. longa extracts and doses of amphotericin-B (Amp-B) and terbinafine (against non-dermatophytes and dermatophytes, respectively). Furthermore, the synergistic therapy showed a time-dependent decrease in fungal growth even after 9 and 12 h of treatment. The inhibition of fungal proteins was also observed to be higher with the treatment of synergistic combinations than with the extracts alone, along with the cell membrane damage caused by terbinafine and amp-B, thus making the resistant fungi incapable of subsisting. Conclusion: The extracts of A. sativum, Z. officinale, M. piperita, L. inermis, and C. longa have proven to be promising alternatives to combat oxidative stress, resistance, and other treatment challenges of onychomycosis.

18.
Front Pharmacol ; 13: 1053744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506587

RESUMO

Triggering through abiotic stress, including chemical triggers like heavy metals, is a new technique for drug discovery. In this research, the effect of heavy metal Nickel on actinobacteria Streptomyces sp. SH-1327 to obtain a stress-derived compound was firstly investigated. A new compound cyclo-(D)-Pro-(D)-Phe (CDPDP) was triggered from the actinobacteria strain SH-1327 with the addition of nickel ions 1 mM. The stress compound was further evaluated for its anti-oxidant, analgesic, and anti-inflammatory activity against rheumatoid arthritis through in-vitro and in-vivo assays in albino mice. A remarkable in-vitro anti-oxidant potential of CDPDP was recorded with the IC50 value of 30.06 ± 5.11 µg/ml in DPPH, IC50 of 18.98 ± 2.91 against NO free radicals, the IC50 value of 27.15 ± 3.12 against scavenging ability and IC50 value of 28.40 ± 3.14 µg/ml for iron chelation capacity. Downregulation of pro-inflammatory mediators (NO and MDA), suppressed levels of pro-inflammatory cytokines (TNF-α, IL-6, IL-Iß) and upregulation of expressions of anti-oxidant enzymes (GSH, catalase, and GST) unveiled its anti-inflammatory potential. CDPDP was analyzed in human chondrocyte cell line CHON-001 and the results demonstrated that CDPDP significantly increased cell survival, and inhibited apoptosis of IL-1ß treated chondrocytes and IL-1ß induced matrix degrading markers. In addition, to evaluate the mitochondrial fitness of CHON-001 cells, CDPDP significantly upregulated pgc1-α, the master regulator of mitochondrial biogenesis, indicating that CDPDP provides protective effects in CHON-001 cells. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile of the CDPDP showed that CDPDP is safe in cases of hepatotoxicity, cardiotoxicity, and cytochrome inhibition. Furthermore, docking results showed good binding of CDPDP with IL-6-17.4 kcal/mol, and the simulation studies proved the stability between ligand and protein. Therefore, the findings of the current study prospect CDPDP as a potent anti-oxidant and a plausible anti-arthritic agent with a strong pharmacokinetic and pharmacological profile.

19.
Front Pharmacol ; 13: 1005154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467058

RESUMO

Aim and objectives: This study aimed to establish a pharmacological basis for evaluating the effects of bergapten (5-methoxypsoralen) in gastrointestinal diseases and assessment of its toxicological profile. Methods: The pharmacokinetic profile was evaluated using the SwissADME tool. AUTODOCK and PyRx were used for evaluating the binding affinities. The obtained results were further investigated for a post-dock analysis using Discovery Studio Visualizer 2016. The Desmond software package was used to conduct molecular dynamic simulations of best bound poses. Bergapten was further investigated for antidiarrheal, anti-secretory, charcoal meal transit time, anti-ulcer, anti-H. pylori activity. Results: Bergapten at a dose of 50, 100, and 200 mg/kg was proved effective in reducing diarrheal secretions, intestinal secretions, and distance moved by charcoal meal. Bergapten at the aforementioned doses acts as a gastroprotective agent in the ethanol-induced ulcer model that can be attributed to its effectiveness against H. pylori. Bergapten shows concentration-dependent relaxation of both spontaneous and K+ (80 mM)-induced contractions in the isolated rabbit jejunum model; the Ca2+ concentration-response curves (CRCs) were shifted to the right showing potentiating effect similar to papaverine. For molecular investigation, the H+/K+ ATPase inhibitory assay indicated inhibition of the pump comparable to omeprazole. Oxidative stress markers GST, GSH, and catalase showed increased expression, whereas the expression of LPO (lipid peroxidation) was reduced. Histopathological examination indicated marked improvement in cellular morphology. ELISA and western blot confirmed the reduction in inflammatory mediator expression. RT-PCR reduced the mRNA expression level of H+/K+ ATPase, confirming inhibition of the pump. The toxicological profile of bergapten was evaluated by an acute toxicity assay and evaluated for behavioral analysis, and the vital organs were used to analyze biochemical, hematological, and histopathological examination. Conclusion: Bergapten at the tested doses proved to be an antioxidant, anti-inflammatory, anti-ulcer, and antidiarrheal agent and relatively safe in acute toxicity assay.

20.
ACS Omega ; 7(50): 46358-46370, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570195

RESUMO

Diabetes mellitus (DM) is a complex and multiple group of disorders, and understanding the molecular mechanisms is a key role in identifying various markers involved in the diagnosis of the disease. Brucine is derived from the seeds of Strychnos nux-vomica L. (Loganiaceae), which has been used in traditional medicine to cure a variety of ailments, such as chronic rheumatism, nervous system diseases, dyspepsia, gonorrhea, anemia, and bronchitis, and has analgesic, anti-inflammatory, anti-oxidant, anti-snake venom, and anti-diabetic properties. The anti-diabetic potential of brucine was studied utilizing in vitro, in silico, in vivo, and molecular methods, including streptozotocin-induced diabetic rat models, α-glucosidase and α-amylase inhibitory assays, and via Auto-DocVina software. Brucine exhibits binding affinities of -5.0 to -10.1 Kcal/mol against chosen protein targets, according to an in silico investigation. In vitro studies revealed that brucine inhibited the enzymes α-amylase and α-glucosidase, and brucine (20 mg/kg) reduced blood glucose levels, oral glucose tolerance overload, body weight, glycosylated hemoglobin levels, total cholesterol, triglycerides, low-density lipoprotein, alanine transaminase, aspartate aminotransferase, total bilirubin, and alkaline phosphatase and elevated high-density lipoprotein levels in in vivo studies. The brucine binding energy against certain protein targets ranges from -5.0 to -10.1 Kcal/mol. It has anti-diabetic, anti-hyperlipidemic, hepatoprotective, anti-oxidant, and anti-inflammatory properties, which are mediated via inhibition of α-glucosidase and α-amylase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA