Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Oncol Res ; 32(3): 477-487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361760

RESUMO

Intracellular communications between breast cancer and fibroblast cells were reported to be involved in cancer proliferation, growth, and therapy resistance. The hallmarks of cancer-fibroblast interactions, consisting of caveolin 1 (Cav1) and mono-carboxylate transporter 4 (MCT4) (metabolic coupling markers), along with IL-6, TGFß, and lactate secretion, are considered robust biomarkers predicting recurrence and metastasis. In order to promote a novel phenotype in normal fibroblasts, we predicted that breast cancer cells could be able to cause loss of Cav1 and increase of MCT4, as well as elevate IL-6 and TGFß in nearby normal fibroblasts. We created a co-culture model using breast cancer (4T1) and normal fibroblast (NIH3T3) cell lines cultured under specific experimental conditions in order to directly test our theory. Moreover, we show that long-term co-culture of breast cancer cells and normal fibroblasts promotes loss of Cav1 and gain of MCT4 in adjacent fibroblasts and increase lactate secretion. These results were validated using the monoculture of each group separately as a control. In this system, we show that metformin inhibits IL-6 and TGFß secretion and re-expresses Cav1 in both cells. However, MCT4 and lactate stayed high after treatment with metformin. In conclusion, our work shows that co-culture with breast cancer cells may cause significant alterations in the phenotype and secretion of normal fibroblasts. Metformin, however, may change this state and affect fibroblasts' acquired phenotypes. Moreover, mitochondrial inhibition by metformin after 8 days of treatment, significantly hinders tumor growth in mouse model of breast cancer.


Assuntos
Neoplasias da Mama , Metformina , Animais , Camundongos , Humanos , Feminino , Metformina/farmacologia , Metformina/metabolismo , Técnicas de Cocultura , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Células NIH 3T3 , Estresse Oxidativo , Neoplasias da Mama/patologia , Fibroblastos/metabolismo , Fenótipo , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral
2.
Mol Cell Biochem ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349465

RESUMO

Mesenchymal stem cells (MSCs) may play a pivotal role in shaping the tumor microenvironment (TME), influencing tumor growth. Nonetheless, conflicting evidence exists regarding the distinct impacts of MSCs on tumor progression, with some studies suggesting promotion while others indicate suppression of tumor cell growth. Considering that oxidative stress is implicated in the dynamic interaction between components of the TME and tumor cells, we investigated the contribution of exosomes released by hydrogen peroxide (H2O2)-treated MSCs to murine mammary tumor growth and progression. Additionally, we aimed to identify the underlying mechanism through which MSC-derived exosomes affect breast tumor growth and angiogenesis. Our findings demonstrated that exosomes released by H2O2-treated, stress-induced MSCs (St-MSC Exo) promoted breast cancer cell progression by inducing the expression of vascular endothelial growth factor (VEGF) and markers associated with epithelial-to-mesenchymal transition. Further clarification revealed that the promoting effect of St-MSC Exo on VEGF expression may, in part, depend on activating STAT3 signaling in BC cells. In contrast, exosomes derived from untreated MSCs retarded JAK1/STAT3 phosphorylation and reduced VEGF expression. Additionally, our observations revealed that the activation of the transcription factor NF-κB in BC cells, stimulated with St-MSC Exo, occurs concurrently with an increase in intracellular ROS production. Moreover, we observed that the increase in VEGF secretion into the conditioned media of 4T1 BC, mediated by St-MSC Exo, positively influenced endothelial cell proliferation, migration, and vascular behavior in vitro. In turn, our in vivo studies confirmed that St-MSC Exo, but not exosomes derived from untreated MSCs, exhibited a significant promoting effect on breast tumorigenicity. Collectively, our findings provide new insights into how MSCs may contribute to modulating the TME. We propose a novel mechanism through which exosomes derived from oxidative stress-induced MSCs may contribute to tumor progression and angiogenesis.

3.
Biomedicines ; 10(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359230

RESUMO

Colorectal cancer is the third most common cancer in the world. Due to the side effects of common treatments such as chemotherapy and radiotherapy, the use of herbal medicines has received much attention. Artemether (ARM) is an herbal medicine derived from artemisinin, which has many anti-tumor properties. However, factors such as low solubility and short half-life have limited the use of artemether in clinical practice. In this study, we aimed to reduce these limitations by encapsulating artemether in human serum albumin (HSA). The hydrodynamic diameter and the zeta potential value of ARM-ALB nanoparticles (NPs) were 171.3 ± 5.88 nm and -19.1 ± 0.82 mV, respectively. Comparison of the effect of free and encapsulated artemether on CT 26 cell line showed that the use of artemether in capsulated form can reduce the effective concentration of the drug. Additionally, in vivo studies have also shown that albumin-artemether nanoparticles can control tumor growth by increasing the production of cytokine IFN-γ and decreasing the production of IL4. Therefore, ARM-ALB nanoparticles have greater anti-tumor effects than free artemether.

4.
Life Sci ; 309: 120975, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126723

RESUMO

AIMS: Circular RNAs (circRNAs) are endogenous covalently closed non-coding RNAs produced by reverse splicing of linear RNA. These molecules are highly expressed in mammalian cells and show cell/tissue-specific expression patterns. They are also significantly dysregulated in various cancers and function as oncogenes or tumor suppressors. Emerging evidence reveals that circRNAs contribute to cancer progression via modulating different cell signaling pathways. Nevertheless, the functional significance of circRNAs in cell signaling pathways regulation is still largely elusive. Considering this, shedding light on the multi-pathway effects of circRNAs may improve our understanding of targeted cancer therapy. Here, we discuss how circRNAs regulate the major cell signaling pathways in human cancers. MATERIALS AND METHODS: We adopted a systematic search in PubMed using the following MeSH terms: circRNAs, non-coding RNAs, lncRNAs, exosomal circRNAs, cancer, and cell signaling. KEY FINDINGS: We discussed different roles of circRNAs during tumorigenesis in which circRNAs affect tumor development through activating or inactivating certain cell signaling pathways via molecular interactions using various signaling pathways. We also discussed how crosstalk between circRNAs and lncRNAs modulate tumorigenesis and provides a resource for the identification of cancer therapeutic targets. SIGNIFICANCE: We here elucidated how circRNAs can modulate different cell signaling pathways and play roles in cancer. This can broaden our horizons toward introducing promising prognostic, diagnostic, and therapeutic targets.


Assuntos
Neoplasias , RNA Longo não Codificante , Animais , Humanos , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Neoplasias/diagnóstico , Transdução de Sinais/genética , Carcinogênese , Mamíferos/genética , Mamíferos/metabolismo
5.
Cell Mol Biol Lett ; 27(1): 58, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869449

RESUMO

Tumor-infiltrated lymphocytes are exposed to many toxic metabolites and molecules in the tumor microenvironment (TME) that suppress their anti-tumor activity. Toxic metabolites, such as lactate and ketone bodies, are produced mainly by catabolic cancer-associated fibroblasts (CAFs) to feed anabolic cancer cells. These catabolic and anabolic cells make a metabolic compartment through which high-energy metabolites like lactate can be transferred via the monocarboxylate transporter channel 4. Moreover, a decrease in molecules, including caveolin-1, has been reported to cause deep metabolic changes in normal fibroblasts toward myofibroblast differentiation. In this context, metformin is a promising drug in cancer therapy due to its effect on oncogenic signal transduction pathways, leading to the inhibition of tumor proliferation and downregulation of key oncometabolites like lactate and succinate. The cross-feeding and metabolic coupling of CAFs and tumor cells are also affected by metformin. Therefore, the importance of metabolic reprogramming of stromal cells and also the pivotal effects of metformin on TME and oncometabolites signaling pathways have been reviewed in this study.


Assuntos
Fibroblastos Associados a Câncer , Metformina , Neoplasias , Fibroblastos/metabolismo , Glicólise , Humanos , Lactatos/metabolismo , Metformina/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Neoplasias/metabolismo , Microambiente Tumoral
6.
Front Immunol ; 13: 836745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693788

RESUMO

Several vaccine candidates for COVID-19 have been developed, and few vaccines received emergency approval with an acceptable level of efficacy and safety. We herein report the development of the first recombinant protein-based vaccine in Iran based on the recombinant SARS-CoV-2 spike protein in its monomeric (encompassing amino acid 1-674 for S1 and 685-1211 for S2 subunits) and trimer form (S-Trimer) formulated in the oil-in-water adjuvant system RAS-01 (Razi Adjuvant System-01). The safety and immunity of the candidate vaccine, referred to as RAZI-COV PARS, were evaluated in Syrian hamster, BALB/c mice, Pirbright guinea pig, and New Zeeland white (NZW) rabbit. All vaccinated animals received two intramuscular (IM) and one intranasal (IN) candidate vaccine at 3-week intervals (days 0, 21, and 51). The challenge study was performed intranasally with 5×106 pfu of SARS-CoV-2 35 days post-vaccination. None of the vaccinated mice, hamsters, guinea pigs, or rabbits showed any changes in general clinical observations; body weight and food intake, clinical indicators, hematology examination, blood chemistry, and pathological examination of vital organs. Safety of vaccine after the administration of single and repeated dose was also established. Three different doses of candidate vaccine stimulated remarkable titers of neutralizing antibodies, S1, Receptor-Binding Domain (RBD), and N-terminal domain (NTD) specific IgG antibodies as well as IgA antibodies compared to placebo and control groups (P<0.01). Middle and high doses of RAZI-COV PARS vaccine significantly induced a robust and quick immune response from the third-week post-immunization. Histopathological studies on vaccinated hamsters showed that the challenge with SARS-CoV-2 did not induce any modifications in the lungs. The protection of the hamster was documented by the absence of lung pathology, the decreased virus load in the lung, rapid clearance of the virus from the lung, and strong humoral and cellular immune response. These findings confirm the immunogenicity and efficacy of the RAZI-COV PARS vaccine. Of the three tested vaccine regimens, the middle dose of the vaccine showed the best protective immune parameters. This vaccine with heterologous prime-boost vaccination method can be a good candidate to control the viral infection and its spread by stimulating central and mucosal immunity.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Cricetinae , Cobaias , Humanos , Camundongos , Modelos Animais , Coelhos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas Combinadas , Vacinas Sintéticas
7.
Asian Pac J Cancer Prev ; 23(6): 1847-1858, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35763623

RESUMO

Cimetidine and ibuprofen exhibit immunomodulatory effects as an antagonist of histamine H2 receptor, and a cyclooxygenase inhibitor, respectively. Here, the effects of cimetidine and ibuprofen on some effector T cell-related parameters were investigated using a breast cancer (BC) model. BC was established in Balb/c mice using the 4T1 cell line. On day 10 after tumor induction, the BC-bearing mice were classified into four groups and treated with PBS, cimetidine (20 mg/kg), ibuprofen (20 mg/kg) or a combination of "cimetidine + ibuprofen" via intraperitoneal injection (daily from days 11 to 30). The mice were sacrificed on day 31 and the frequency of splenic Th1 and Treg cells, plasma IFN-γ and TGF-ß levels, and intra-tumoral T-bet, GATA3, FOXP3 and RORγt expressions were detected using flowcytometry, ELISA and real-time-PCR, respectively. In untreated cancerous mice, the percentage of splenic Th1 cells and plasma IFN-γ levels were lower (P<0.003 and P<0.01, respectively), whereas the percentage of splenic Treg cells and plasma TGF-ß levels were higher than in healthy mice (P<0.04 and P<0.005, respectively). Treatment of BC-bearing mice with cimetidine, ibuprofen or both drugs promoted the frequency of Th1 cells (P<0.05, P<0.007 and P<0.005, respectively) as well as IFN-γ levels (P<0.004, P<0.0001 and P<0.03, respectively), while reduced the frequencies of Treg cells (P<0.02, P<0.03 and P<0.01, respectively), TGF-ß levels (P<0.006, P<0.02 and P<0.002, respectively), intra-tumoral expression of FOXP3 (P<0.006, P<0.005 and P<0.005, respectively), and intra-tumoral expression of RORγt (P<0.04, P<0.03 and P<0.05, respectively) compared with untreated BC mice. The "cimetidine + ibuprofen"-treated mice displayed greater T-bet expression than the un-treated mice (P<0.006). Cimetidine and/or ibuprofen-treated BC-bearing mice exhibited reduced intra-tumoral expression of GATA3 compared with the untreated BC mice, but the differences were not significant. Cimetidine and ibuprofen correct some effector T cell-related parameters in cancerous mice. Immunotherapeutic potentials cimetidine and ibuprofen in cancers need investigations.


Assuntos
Cimetidina , Neoplasias , Animais , Cimetidina/farmacologia , Cimetidina/uso terapêutico , Modelos Animais de Doenças , Fatores de Transcrição Forkhead , Ibuprofeno/farmacologia , Ibuprofeno/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta
8.
J Immunol Res ; 2022: 8343763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571563

RESUMO

Alzheimer's is characterized by accumulation of amyloid-ß (Aß) associated with insufficient clearance of toxicants from the brain establishing a chronic inflammation and other abnormalities in the brain. Inflammatory microglia and astrocytes along with abnormal lymphatics associated with insufficient clearance of Aß and other toxicants from the brain establish a chronic inflammation. This causes abnormal choroid plexus, leukocyte trafficking, and hypoxic condition along with high levels of regulatory T cells (Tregs). There is no consensus among researchers regarding decreasing or increasing Tregs to achieve therapeutic effects. Different opposing studies tried to suppress or boost inflammation to treat AD. Based on reproductive immunology, sperm induces constructive inflammatory response and seminal-vesicle-fluid (SVF) suppresses inflammation leading to uterus remodeling. It prompted us to compare therapeutic efficiency of inflammatory or anti-inflammatory approaches in AD model based on reproductive immunology. To do so, SVF, sperm, or sperm head (from Wistar rat) was administered via intra-cerebro-ventricular route to Sprague Dawley rat AD model. Behavioral and histological examination were made and treatment groups were compared with control AD model and normal groups. Therapeutic efficacy was in the order of sperm head>sperm>SVF. Sperm head returned learning memory, Aß, lymphatics, neural growth factors, choroid plexus function, Iba-1/GFAP, MHC II/CD86/CD40, CD38/IL-10, and hypoxia levels back to normal level. However, SVF just partially ameliorated the disease. Immunologic properties of sperm/sperm head to elicit constructive inflammation can be extended to organs other than reproductive. This nature-based approach overcomes genetic difference as an important obstacle and limitation in cell therapy, and is expected to be safe or with least side effects.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides , Animais , Anti-Inflamatórios/uso terapêutico , Encéfalo , Terapia Baseada em Transplante de Células e Tecidos , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Cabeça do Espermatozoide/metabolismo , Cabeça do Espermatozoide/patologia
9.
Electromagn Biol Med ; 41(1): 71-79, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34839760

RESUMO

Electrochemotherapy (ECT) as a tumor treatment modality is approved for cutaneous and subcutaneous tumors. The purpose of the present study was to examine the effect of 900 MHz radiofrequency (RF) pulse-modulated by 217 Hz EMFs similar to those emitted by mobile phones on the mechanisms of ECT in vivo including: tumor hypoxia and immune system response, and on tumor volume.4 T1 cells were injected subcutaneously into the right flank of Balb/c mice. The mice were exposed to RF fields at specific absorption rate (SAR) 2 W/kg for 10 min/day and then treated with ECT. Two protocols of ECT were used: ((70 V/cm-5 kHz) and 70 V/cm-4 kHz)). Tumor hypoxia was analyzed through HIF-1α immuonohistochemistry assay. Interleukin 4 (IL-4) and IFN-γ levels were estimated by enzyme-linked immunosorbent assay (ELISA) technique to evaluate immune system response. Also, tumors volume changes were measured for 24 days following the treatment. The results showed that pulse-modulated RF fields could increase hypoxia induced by ECT, significantly (about 13% in ECT (70 V/cm-5 kHz) and 11% in ECT (70 V/cm-4 kHz)). However, these fields did not have significant effect on immune system response (the levels of IL-4 and IFN-γ) and tumor volume changes induced by ECT. Our results indicated that pulse-modulated RF fields could not affect tumor volume changes in ECT with the frequency of 5 kHz and voltage of 70 V/cm efficacy in vivo. However, investigating the role of other environmental intervening factors on this protocol of ECT is recommended in further studies.


Assuntos
Telefone Celular , Eletroquimioterapia , Animais , Campos Eletromagnéticos , Camundongos , Ondas de Rádio/efeitos adversos , Hipóxia Tumoral
11.
Iran J Allergy Asthma Immunol ; 20(5): 600-613, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34664819

RESUMO

Metformin, cimetidine, and ibuprofen separately exhibit immunomodulatory and anti-tumorigenic effects. Herein, the impacts of metformin alone and in combination with cimetidine/ibuprofen on some Th1- and regulatory T (Treg) cell-related parameters were evaluated using a breast cancer (BC) model. For establishing the BC model, four groups of Balb/c mice were challenged with the carcinoma cell line. After 11-30 days post-induction, they were treated intraperitoneally (with metformin (200 mg/kg), "metformin plus cimetidine (20 mg/kg)"; "metformin plus ibuprofen (20 mg/kg)", or with all three drugs in mentioned doses. Untreated BC and without tumor mice were enrolled as control groups. On day 31, splenic Th1 and Treg cell frequencies, serum interferon-gamma (IFN-γ), and transforming growth factor-beta (TGF-ß) concentration, and intra-tumoral T-bet, TGF-ß, and forkhead box protein P3 (FOXP3) expression were measured; using flow cytometry, enzyme-linked immunosorbent assay (ELISA), and real-time-PCR, respectively. Treatment of the BC mice with metformin alone and in combination with cimetidine and/or ibuprofen enhanced the frequency of Th1 cells, and IFN-γ concentration, while it resulted in a decrease in the frequency of Treg cells, serum TGF-ß concentration, and the expression of FOXP3 and TGF-ß compared with un-treated BC mice. FOXP3 expression in the metformin-treated group was lower in mice who received combination therapy. Survival rate and body weight were increased, while tumor size and spleen index were reduced in mice treated with metformin alone and its combination with cimetidine and/or ibuprofen. No remarkable differences were found between metformin-treated mice and those who received combination therapies regarding Th1 and Treg cell percentages, TGF-ß expression, body weight, tumor size, and spleen index. The benefits of combinational therapy may be largely attributed to metformin. Immunotherapeutic potentials of metformin in cancers need further considerations.


Assuntos
Cimetidina/farmacologia , Ibuprofeno/farmacologia , Metformina/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Imunomodulação/efeitos dos fármacos , Camundongos , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
12.
Oxid Med Cell Longev ; 2021: 5529484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194604

RESUMO

Breast cancer is one of the most common type of tumor and the leading cause of death in the world's female population. Various therapeutic approaches have been used to treat tumors but have not led to complete recovery and have even damaged normal cells in the body. Moreover, metastatic tumors such as breast cancer are much more resistant to treatment, and current treatments have not been very successful in treating them and remain a challenge. Therefore, new approaches should be applied to overcome this problem. Given the importance of hypoxia in tumor survival, we aimed to test the antitumor effects of oxygenated water to decrease hypoxia along with tumor-derived exosomes to target tumor. The purpose of administering oxygenated water and tumor exosomes was to reduce hypoxia and establish an effective immune response against tumor antigens, respectively. For this purpose, the breast cancer mice model was induced using the 4T1 cell line in Balb/c mice and treated with oxygenated water via an intratumoral (IT) and/or intraperitoneal (IP) route and/or exosome (TEX). Oxygenation via the IT+IP route was more efficient than oxygenation via the IT or IP route. The efficiency of oxygenation via the two routes along with TEX led to the best therapeutic outcome. Antitumor immune responses directed by TEX became optimized when systemic (IP) and local (IT) oxygenation was applied compared to administration of TEX alone. Results demonstrated a significant reduction in tumor size and the highest levels of IFN-γ and IL-17 and the lowest levels of IL-4 FoxP3, HIF-1α, VEGF, MMP-2, and MMP-9 in the IT+IP+TEX-treated group. Oxygenated water on the one hand could reduce tumor size, hypoxia, angiogenesis, and metastasis in the tumor microenvironment and on the other hand increases the effective immune response against the tumor systemically. This therapeutic approach is proposed as a new strategy for devising vaccines in a personalized approach.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Exossomos/metabolismo , Imunidade/imunologia , Imunoterapia/métodos , Água/química , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microambiente Tumoral
13.
Int Immunopharmacol ; 98: 107696, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34147914

RESUMO

Having played homeostatic role, the immune system maintains the integrity of the body. Such a characteristic makes immune system as an attractive candidate for resolution of inflammatory disease followed by tissue repair. As first responder cells, neutrophils direct immune response playing key role in tissue remodeling. Previous studies revealed that sperm attracts neutrophils and promotes uterine remodeling suitable for fetus growth. Accordingly, sperm and more efficiently sperm head had remodeling effects on damaged brain in Alzheimer's disease (AD) model. To further reveal the mechanism, two kinds of in vivo study, including kinetic study and inhibition of neutrophil phagocytosis on AD model, as well as in vitro study using co-culture of neutrophil and sperm head were performed. Kinetic study revealed that sperm head recruited neutrophil to nasal mucosa similar to that of uterus and sperm head-phagocytizing neutrophils acquired new activation status comparing to control. In vitro study also demonstrated that sperm head-phagocytizing neutrophils acquire new activation status and express coding RNAs of sperm head. Accordingly, inhibition of neutrophil phagocytic activity abrogated therapeutic effects of sperm head. Neutrophils activation status is important in the fate of inflammatory process. Modulation but not suppression of neutrophils helps remodeling and repair of damaged tissue. Sperm head is an intelligent cell and not just a simple particle to remove by phagocytosis but instead can program neutrophils and consequently immune response into reparative mode after phagocytosis.


Assuntos
Doença de Alzheimer/terapia , Neutrófilos/imunologia , Fagocitose/imunologia , Cabeça do Espermatozoide/transplante , Administração Intranasal , Alprostadil/metabolismo , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/toxicidade , Animais , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Humanos , Masculino , Mucosa Nasal , Ativação de Neutrófilo , Neutrófilos/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/toxicidade , Cultura Primária de Células , RNA/metabolismo , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo
14.
Transl Oncol ; 14(5): 101056, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33684837

RESUMO

Chemotherapeutic drugs kill cancer cells or control their progression all over the patient's body, while radiation- and surgery-based treatments perform in a particular site. Based on their mechanisms of action, they are classified into different groups, including alkylating substrates, antimetabolite agents, anti-tumor antibiotics, inhibitors of topoisomerase I and II, mitotic inhibitors, and finally, corticosteroids. Although chemotherapeutic drugs have brought about more life expectancy, two major and severe complications during chemotherapy are chemoresistance and tumor relapse. Therefore, we aimed to review the underlying intracellular signaling pathways involved in cell death and resistance in different chemotherapeutic drug families to clarify the shortcomings in the conventional single chemotherapy applications. Moreover, we have summarized the current combination chemotherapy applications, including numerous combined-, and encapsulated-combined-chemotherapeutic drugs. We further discussed the possibilities and applications of precision medicine, machine learning, next-generation sequencing (NGS), and whole-exome sequencing (WES) in promoting cancer immunotherapies. Finally, some of the recent clinical trials concerning the application of immunotherapies and combination chemotherapies were included as well, in order to provide a practical perspective toward the future of therapies in cancer cases.

15.
J Complement Integr Med ; 18(2): 303-310, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33544516

RESUMO

OBJECTIVES: The potent anti-tumorigenic effects were attributed to ginger and there are some reports regarding the anti-cancer and immunomodulatory properties ginger-derived components. This study aimed to investigate the effects of zingerone on some immune-related parameters in an animal model of breast cancer. METHODS: The breast cancer was established in female BALB/c mice using a carcinogenic 4T1 cell line. At day 10 after cancer induction, tumor-bearing mice were divided into five groups and treated intraperitoneal (daily from days 11-30) with saline or zingerone (at doses 10, 20, 50 and 100 mg/kg/day). The mice were sacrificed on day 31 and the number of splenic Th1- and Treg cells, the expression of IFN-γ and TGF-ß in the blood mononuclear cells, the antibody production against sheep red blood cell (SRBC) were determined using flow cytometry, real time-PCR and a standard hemagglutination assay, respectively. RESULTS: Zingerone at doses 50 and 100 mg/kg enhanced the number of splenic Th1 cells (p<0.03 and 0.007, respectively); at doses 10, 20, 50 and 100 mg/kg reduced the number of splenic Treg cells (p<0.02, 0.01, and 0.01, respectively), at doses 50 and 100 mg/kg enhanced the expression of IFN-γ (p<0.03), at doses 50 and 100 mg/kg reduced the expression of TGF-ß, at doses 50 mg/kg reduced the titer of anti-SRBC antibody (p<0.05). CONCLUSIONS: Zingerone improve the T cell-mediated and antibody responses in a mouse model of breast cancer. The immunotherapeutic potentials of zingerone in cancers need more considerations.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Guaiacol/análogos & derivados , Imunidade/efeitos dos fármacos , Zingiber officinale , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Guaiacol/farmacologia , Camundongos , Camundongos Endogâmicos BALB C
16.
J Cell Physiol ; 236(2): 1494-1514, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32740942

RESUMO

Distinguishing the multiple effects of reactive oxygen species (ROS) on cancer cells is important to understand their role in tumour biology. On one side, ROS can be oncogenic by promoting hypoxic conditions, genomic instability and tumorigenesis. Conversely, elevated levels of ROS-induced oxidative stress can induce cancer cell death. This is evidenced by the conflicting results of research using antioxidant therapy, which in some cases promoted tumour growth and metastasis. However, some antioxidative or ROS-mediated oxidative therapies have also yielded beneficial effects. To better define the effects of oxidative stress, in vitro experiments were conducted on 4T1 and splenic mononuclear cells (MNCs) under hypoxic and normoxic conditions. Furthermore, hydrogen peroxide (H2 O2 ; 10-1,000 µM) was used as an ROS source alone or in combination with hyaluronic acid (HA), which is frequently used as drug delivery vehicle. Our result indicated that the treatment of cancer cells with H2 O2 + HA was significantly more effective than H2 O2 alone. In addition, treatment with H2 O2 + HA led to increased apoptosis, decreased proliferation, and multiphase cell cycle arrest in 4T1 cells in a dose-dependent manner under normoxic or hypoxic conditions. As a result, migratory tendency and the messenger RNA levels of vascular endothelial growth factor, matrix metalloproteinase-2 (MMP-2), and MMP-9 were significantly decreased in 4T1 cells. Of note, HA treatment combined with 100-1,000 µM H2 O2 caused more damage to MNCs as compared to treatment with lower concentrations (10-50 µM). Based on these results, we propose to administer high-dose H2 O2 + HA (100-1000 µM) for intratumoural injection and low doses for systemic administration. Intratumoural route could have toxic and inhibitory effects not only on the tumour but also on residential myeloid cells defending it, whereas systemic treatment could stimulate peripheral immune responses against the tumour. More in vivo research is required to confirm this hypothesis.


Assuntos
Antioxidantes/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ácido Hialurônico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/química
17.
Electromagn Biol Med ; 40(1): 158-168, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33306410

RESUMO

Electrochemotherapy (ECT) is a new and promising treatment strategy for cancer treatment. The aim of this work is to investigate the effect of 900 MHz radiofrequency electromagnetic fields (RF-EMFs) on the mechanisms of ECT (low voltage, high frequency) including cell permeability in vitro, and tumor hypoxia, immune system response in vivo, and on volume of tumors treated with ECT (70 V/cm, 5 kHz). The 4T1 cells were exposed to RF-EMFs at 17, 162, or 349 µW/cm2 power densities, using GSM900 simulator, 10 min. The cells were then put in individual groups, comprising of no treatment, chemotherapy, electric pulses (EPs), or ECT. The cell viability was evaluated. The mice with 4T1 tumor cells were exposed to RF field 10 min/day until the tumor volume reached about 8 mm. Then, the mice tumors were treated with ECT. Tumor hypoxia and immune system response was analyzed through immunohistochemistry (IHC) assay and ELISA technique, respectively. The volume of tumors was also calculated for 24 days following the treatment. The results showed that RF fields at 349 µW/cm2 could increase tumor hypoxia induced by ECT and cause a significant increase of Interferon-gamma (IFN-γ) in comparison with group ECT alone. However, 900 MHz radiations did not affect the volume of tumors treated to ECT (70 V/cm, 5 kHz) significantly. In this study, 900 MHz EMF could improve some biological pathways induced by ECT. Such a positive effect could utilize in some other treatments to increase efficacy, which should be investigated in further research.


Assuntos
Eletroquimioterapia/métodos , Campos Eletromagnéticos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Camundongos , Carga Tumoral
18.
Cancer Lett ; 501: 200-209, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33220334

RESUMO

Despite recent advances in cancer immunotherapy, there have been limitations in cancer treatment and patient survival due to a lack of antigen recognition and immunosuppressive tumor microenvironment. To overcome this issue, we have shown that miRNA modified tumor-derived Extracellular Vesicles (mt-EVs) would be an advantageous prospect since they are tumor specific and associated antigen sources which cause increase in maturation and antigen-presenting function of dendritic cells. Also, miRNAs are promising candidates for cancer therapy because of their ability to control several host immune subsets to respond against cancer cells as well as tumor microenvironment remodeling. Here, we report that mt-EVs containing tumor specific antigens loaded with miRNAs (Let-7i, miR-142 and, miR-155) could increase the survival rate of tumor-bearing mice and induce reduction in tumor growth. Importantly, the administration of mt-EVs elicited cytotoxic T cells with increasing in IFNγ and Granzyme B production ability. Notably, intramuscular (IM) injection of let7i, miR142-EVs had a significant effect on dendritic cell (DC) maturation and T cell activation along with tumor shrinkage. Collectively, our findings suggest that administration of miRNA containing EVs may be effective immunotherapy against solid tumors.


Assuntos
Vesículas Extracelulares/transplante , Neoplasias Mamárias Experimentais/terapia , MicroRNAs/genética , Animais , Antígenos de Neoplasias/genética , Células Dendríticas/metabolismo , Vesículas Extracelulares/genética , Feminino , Granzimas/metabolismo , Injeções Intramusculares , Interferon gama/metabolismo , Ativação Linfocitária , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/imunologia , Camundongos , Linfócitos T/imunologia , Microambiente Tumoral
19.
Bioorg Chem ; 105: 104429, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33161256

RESUMO

Human serum albumin (HSA) as the most abundant protein in human blood plasma, can be a good indicator for evaluating severity of some diseases in the clinic. HSA can be find in two forms: reduced albumin (human mercaptalbumin (HMA)) and oxidized albumin (human non-mercaptalbumin (HNA)). The rate of oxidized albumin to total albumin can be enhanced in multiple diseases. Increase in HNA level have been demonstrated in liver, diabetes plus fatigue and coronary artery diseases. In liver patients, this enhancement can reach to 50-200 percent which can then lead to bacterial/viral infections and eventually death in severe conditions. Due to the induction of cytokine storm, we can say that the level of HNA in serum of coronavirus disease 2019 (COVID-19) patients may be a positive predictor of mortality, especially in patients with underlying diseases such as cardiovascular disease (CVD), diabetes, aging and other inflammatory diseases. We suggest that checking oxidized albumin in COVID-19 patients may provide new therapeutic and diagnostic opportunities to better combat COVID-19.


Assuntos
COVID-19/diagnóstico , Albumina Sérica Humana/análise , COVID-19/terapia , COVID-19/virologia , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Fígado/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2/isolamento & purificação , Albumina Sérica/análise , Albumina Sérica/química , Albumina Sérica Humana/química
20.
Electromagn Biol Med ; 39(3): 239-249, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32410511

RESUMO

Electrochemotherapy (ECT), the combination of electric pulses (EPs) and an anticancer drug, is a type of cancer treatment method. We investigated the effect of 217-Hz magnetic fields (MFs) similar to that generated by GSM900 mobile phones, as intervening factors, on proposed mechanisms of ECT including permeability, tumor hypoxia and immune system response. The 4T1 cells were exposed to extremely low-frequency (ELF)-MFs at 93, 120 or 159 µT intensities, generated by Helmholtz coils 10 min, and then put in individual groups, comprising no treatment, chemotherapy, EPs or ECT. The cell viability was evaluated. Then, two treatment protocols were selected for in vivo experiments. The mice with 4T1 tumor cells were exposed to ELF-MFs 10 min/day until the day their tumors reached 8 mm in diameter. Then, the tumors were treated to ECT. Tumor hypoxia and immune system response were analyzed through immunohistochemistry assay and enzyme-linked immunosorbent assay technique, respectively. The results in vitro indicated a significant decreased ECT efficacy of 60 V/cm, 5 kHz at the flux density of 93 µT. The results in vivo showed that pre-exposure to ELF-MFs could increase tumor hypoxia induced by ECT. In addition, exposure to ELF-MFs before ECT caused a significant increase in interferon-γ/interleukin-4 in comparison with ECT alone. More studies, including studies on the effect of ELF-MFs emitted from mobile phones on tumor volume changes induced by ECT, are needed to elucidate how the process of ECT is influenced by the MFs.


Assuntos
Telefone Celular , Eletroquimioterapia , Campos Eletromagnéticos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Feminino , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA