Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Res (Camb) ; 12(5): 783-795, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37915479

RESUMO

The present study was designed to evaluate whether elderberry (EB) effectively reduces inflammation and oxidative stress in hippocampal cells to modify seizure damage. Seizure was induced in rats by the injection of pentylenetetrazol (PTZ). In the Seizure + EB group, EB powder was added to the rats' routine diet for eight consecutive weeks. The study included several behavioral tests, immunohistopathology, Voronoi tessellation (to estimate the spatial distribution of cells in the hippocampus), and Sholl analysis. The results in the Seizure + EB group showed an improvement in the behavioral aspects of the study, a reduction in astrogliosis, astrocyte process length, number of branches, and intersections distal to the soma in the hippocampus of rats compared to controls. Further analysis showed that EB diet increased nuclear factor-like 2 expression and decreased caspase-3 expression in the hippocampus in the Seizure + EB group. In addition, EB protected hippocampal pyramidal neurons from PTZ toxicity and improved the spatial distribution of hippocampal neurons in the pyramidal layer and dentate gyrus. The results of the present study suggest that EB can be considered a potent modifier of astrocyte reactivation and inflammatory responses.

2.
Reprod Fertil Dev ; 34(17): 1078-1088, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127818

RESUMO

CONTEXT: Approximately 40-50% of all infertility cases are due to male infertility, and one of the most important causes of infertility is azoospermia. AIMS: This study aimed to evaluate the potential effect of elderberry on the spermatogenesis process in the azoospermia mice model. METHOD: Thirty adult male mice were randomised into three groups: control; busulfan (45mg/kg); and busulfan+elderberry (2%), 6mL orally per animal. Sperm samples were collected from the tail of the epididymis, and testis specimens were also collected and then subjected to sperm parameters analysis, histopathological evaluation, reactive oxygen species (ROS), and glutathione (GSH) measurement to determine the mRNA expression and hormonal assay. CONCLUSIONS: It can be concluded that the elderberry diet may be considered a complementary treatment to improve the spermatogenesis process in busulfan-induced azoospermic mice. IMPLICATIONS: Considering some limitations, the elderberry diet can be an alternate option for improving testicular damage following chemotherapy.


Assuntos
Azoospermia , Sambucus , Humanos , Masculino , Camundongos , Animais , Azoospermia/induzido quimicamente , Azoospermia/genética , Bussulfano/farmacologia , Sementes , Espermatogênese , Testículo/metabolismo , Dieta
3.
Apoptosis ; 27(11-12): 852-868, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35876935

RESUMO

Recent investigations of COVID-19 have largely focused on the effects of this novel virus on the vital organs in order to efficiently assist individuals who have recovered from the disease. In the present study we used hippocampal tissue samples extracted from people who died after COVID-19. Utilizing histological techniques to analyze glial and neuronal cells we illuminated a massive degeneration of neuronal cells and changes in glial cells morphology in hippocampal samples. The results showed that in hippocampus of the studied brains there were morphological changes in pyramidal cells, an increase in apoptosis, a drop in neurogenesis, and change in spatial distribution of neurons in the pyramidal and granular layer. It was also demonstrated that COVID-19 alter the morphological characteristics and distribution of astrocyte and microglia cells. While the exact mechanism(s) by which the virus causes neuronal loss and morphology in the central nervous system (CNS) remains to be determined, it is necessary to monitor the effect of SARS-CoV-2 infection on CNS compartments like the hippocampus in future investigations. As a result of what happened in the hippocampus secondary to COVID-19, memory impairment may be a long-term neurological complication which can be a predisposing factor for neurodegenerative disorders through neuroinflammation and oxidative stress mechanisms.


Assuntos
COVID-19 , Humanos , Apoptose , SARS-CoV-2 , Neurogênese/fisiologia , Hipocampo , Causalidade
4.
Neurosci Lett ; 771: 136418, 2022 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-34954113

RESUMO

Tramadol is a synthetic analogue of codeine and stimulates neurodegeneration in several parts of the brain that leads to various behavioral impairments. Despite the leading role of hippocampus in learning and memory as well as decreased function of them under influence of tramadol, there are few studies analyzing the effect of tramadol administration on gene expression profiling and structural consequences in hippocampus region. Thus, we sought to determine the effect of tramadol on both PC12 cell line and hippocampal tissue, from gene expression changes to structural alterations. In this respect, we investigated genome-wide mRNA expression using high throughput RNA-seq technology and confirmatory quantitative real-time PCR, accompanied by stereological analysis of hippocampus and behavioral assessment following tramadol exposure. At the cellular level, PC12 cells were exposed to 600 µM tramadol for 48 hrs, followed by the assessments of ROS amount and gene expression levels of neurotoxicity associated with neurodegenerative pathways such as apoptosis and autophagy. Moreover, the structural and functional alteration of the hippocampus under chronic exposure to tramadol was also evaluated. In this regard, rats were treated with tramadol at doses of 50 mg/kg for three consecutive weeks. In vitro data revealed that tramadol provoked ROS production and caused the increase in the expression of autophagic and apoptotic genes in PC12 cells. Furthermore, in-vivo results demonstrated that tramadol not only did induce hippocampal atrophy, but it also triggered microgliosis and microglial activation, causing upregulation of apoptotic and inflammatory markers as well as over-activation of neurodegeneration. Tramadol also interrupted spatial learning and memory function along with long-term potentiation (LTP). Taken all together, our data disclosed the neurotoxic effects of tramadol on both in vitro and in-vivo. Moreover, we proposed a potential correlation between disrupted biochemical cascades and memory deficit under tramadol administration.


Assuntos
Analgésicos Opioides/toxicidade , Hipocampo/efeitos dos fármacos , Memória , Tramadol/toxicidade , Animais , Apoptose , Autofagia , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Células PC12 , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
5.
Neurosci Lett ; 764: 136246, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530114

RESUMO

Choroid plexus (CP) is the principal source of cerebrospinal fluid. CP can produce and release a wide range of materials including growth factors, neurotrophic factors, etc. all of which play an important role in the maintenance and proper functioning of the brain. Methamphetamine (METH) is a CNS neurostimulant that causes brain dysfunction. Herein, we investigated the potential effects of METH exposure on CP structure and function. Stereological analysis revealed a significant alteration in CP volume, epithelial cells and capillary number upon METH treatment. Electron microscopy exhibited changes in ultrastructure. Moreover, the upregulation of neurotrophic factors such as BDNF and VEGF as well as autophagy and apoptosis gene following METH administration were observed. We also identified several signaling cascades related to autophagy. In conclusion, gene expression changes coupled with structural alterations of the CP in response to METH suggested METH-induced autophagy in CP.


Assuntos
Estimulantes do Sistema Nervoso Central/toxicidade , Plexo Corióideo/efeitos dos fármacos , Metanfetamina/toxicidade , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Fator Neurotrófico Derivado do Encéfalo/análise , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3/análise , Caspase 3/metabolismo , Estimulantes do Sistema Nervoso Central/administração & dosagem , Plexo Corióideo/citologia , Plexo Corióideo/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/ultraestrutura , Injeções Intraperitoneais , Masculino , Metanfetamina/administração & dosagem , Microscopia Eletrônica de Transmissão , Ratos , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
ACS Chem Neurosci ; 12(12): 2143-2150, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34100287

RESUMO

The recent coronavirus disease of 2019 (COVID-19) pandemic has adversely affected people worldwide. A growing body of literature suggests the neurological complications and manifestations in response to COVID-19 infection. Herein, we explored the inflammatory and immune responses in the post-mortem cerebral cortex of patients with severe COVID-19. The participants comprised three patients diagnosed with severe COVID-19 from March 26, 2020, to April 17, 2020, and three control patients. Our findings demonstrated a surge in the number of reactive astrocytes and activated microglia, as well as low levels of glutathione along with the upregulation of inflammation- and immune-related genes IL1B, IL6, IFITM, MX1, and OAS2 in the COVID-19 group. Overall, the data imply that oxidative stress may invoke a glial-mediated neuroinflammation, which ultimately leads to neuronal cell death in the cerebral cortex of COVID-19 patients.


Assuntos
COVID-19 , Morte Celular , Córtex Cerebral , Humanos , Pandemias , SARS-CoV-2
7.
Biologicals ; 56: 39-44, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30309678

RESUMO

Generation of germ cells from embryonic stem cells in vitro could have great application for treating infertility. The temporal expression profile of several genes was expressed at different stages of germ cell development and examined in differentiation the mouse embryonic stem cells. Cells were treated in three groups of control, with 10-8 M of all-trans retinoic acid and the combination of 10-9 M of 17ß-Estradiol and retinoic acid for 7, 12, 17 or 22 days. Quantitative RT-PCR and Immunofluorescent were used to investigate the possible inductive effects of estrogen on mouse embryonic stem cell-derived primordial germ cells. mRNA expression of Oct4 and Dazl were downregulated in embryonic stem cells by the retinoic acid group, whereas Mvh transcription was reduced by retinoic acid and estrogen group in these cells compared to the control group. But, retinoic acid with estrogen group-treated cells exhibited increased mRNA expression of Stra8, Fragilis, Sycp3, GDF9, and Stella compared to untreated controls. The expression of Stella and Mvh proteins were remarkably increased in cell colonies. This study shows that estrogen affects the expression of specific markers of primordial germ cells. Also, estrogen and retinoic acid speed up and increase the level of expression of specific markers.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Expressão Gênica/efeitos dos fármacos , Células Germinativas/crescimento & desenvolvimento , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Tretinoína/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Proteínas Cromossômicas não Histona , RNA Helicases DEAD-box/genética , Proteínas de Ligação a DNA , Células Germinativas/citologia , Células Germinativas/metabolismo , Fator 9 de Diferenciação de Crescimento/genética , Proteínas de Membrana/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Nucleares/genética , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA