Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lupus Sci Med ; 9(1)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35260475

RESUMO

BACKGROUND: Extracellular vesicles (EVs) released by blood cells have proinflammation and procoagulant action. Patients with systemic lupus erythematosus (SLE) present high vascular inflammation and are prone to develop cardiovascular diseases. Therefore, we postulated that the EV populations found in blood, including platelet EVs (PEVs) and red blood cell EVs (REVs), are associated with SLE disease activity and SLE-associated cardiovascular accidents. METHOD: We assessed autotaxin (ATX) plasma levels by ELISA, the platelet activation markers PAC1 and CD62P, ATX bound to platelets and the amounts of plasma PEVs and REVs by flow cytometry in a cohort of 102 patients with SLE, including 29 incident cases of SLE and 30 controls. Correlation analyses explored the associations with the clinical parameters. RESULT: Platelet activation markers were increased in patients with SLE compared with healthy control, with the marker CD62P associated with the SLE disease activity index (SLEDAI). The incident cases show additional associations between platelet markers (CD62P/ATX and PAC1/CD62P) and the SLEDAI. Compared with controls, patients with SLE presented higher levels of PEVs, phosphatidylserine positive (PS+) PEVs, REVs and PS+ REVs, but there is no association with disease activity. When stratified according to the plasma level of PS+ REVs, the group of patients with SLE with a high level of PS+ REVs presented a higher number of past thrombosis events and higher ATX levels. CONCLUSION: Incident and prevalent forms of SLE cases present similar levels of platelet activation markers, with CD62P correlating with disease activity. Though EVs are not associated with disease activity, the incidence of past thrombotic events is higher in patients with a high level of PS+ REVs.


Assuntos
Vesículas Extracelulares , Lúpus Eritematoso Sistêmico , Trombose , Biomarcadores , Eritrócitos , Vesículas Extracelulares/metabolismo , Humanos , Lúpus Eritematoso Sistêmico/complicações , Fosfatidilserinas/metabolismo , Trombose/etiologia
2.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884486

RESUMO

Lysophosphatidylserine (lysoPS) is known to regulate immune cell functions. Phospholipase A1 member A (PLA1A) can generate this bioactive lipid through hydrolysis of sn-1 fatty acids on phosphatidylserine (PS). PLA1A has been associated with cancer metastasis, asthma, as well as acute coronary syndrome. However, the functions of PLA1A in the development of systemic autoimmune rheumatic diseases remain elusive. To investigate the possible implication of PLA1A during rheumatic diseases, we monitored PLA1A in synovial fluids from patients with rheumatoid arthritis and plasma of early-diagnosed arthritis (EA) patients and clinically stable systemic lupus erythematosus (SLE) patients. We used human primary fibroblast-like synoviocytes (FLSs) to evaluate the PLA1A-induced biological responses. Our results highlighted that the plasma concentrations of PLA1A in EA and SLE patients were elevated compared to healthy donors. High concentrations of PLA1A were also detected in synovial fluids from rheumatoid arthritis patients compared to those from osteoarthritis (OA) and gout patients. The origin of PLA1A in FLSs and the arthritic joints remained unknown, as healthy human primary FLSs does not express the PLA1A transcript. Besides, the addition of recombinant PLA1A stimulated cultured human primary FLSs to secrete IL-8. Preincubation with heparin, autotaxin (ATX) inhibitor HA130 or lysophosphatidic acid (LPA) receptor antagonist Ki16425 reduced PLA1A-induced-secretion of IL-8. Our data suggested that FLS-associated PLA1A cleaves membrane-exposed PS into lysoPS, which is subsequently converted to LPA by ATX. Since primary FLSs do not express any lysoPS receptors, the data suggested PLA1A-mediated pro-inflammatory responses through the ATX-LPA receptor signaling axis.


Assuntos
Artrite/patologia , Fibroblastos/patologia , Gota/patologia , Lúpus Eritematoso Sistêmico/patologia , Fosfolipases A1/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Sinoviócitos/patologia , Artrite/genética , Artrite/imunologia , Artrite/metabolismo , Estudos de Casos e Controles , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Gota/genética , Gota/imunologia , Gota/metabolismo , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Fosfolipases A1/genética , Diester Fosfórico Hidrolases/genética , Receptores de Ácidos Lisofosfatídicos/genética , Líquido Sinovial/imunologia , Líquido Sinovial/metabolismo , Sinoviócitos/imunologia , Sinoviócitos/metabolismo
3.
Biochem Pharmacol ; 192: 114667, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216604

RESUMO

Evidence is growing for the role of red blood cells (RBCs) in vascular homeostasis, including thrombogenic events and inflammation. Lysophosphatidic acid (LPA) is known to induce phosphatidylserine (PS) exposure and the release of RBC Extracellular Vesicles (REVs). Using high sensitivity flow cytometry, we examined the effects and the mechanisms by which the LPA species commonly found in human plasma could activate RBCs. We report that LPA 16:0, 18:0 and 18:1, but not LPA 20:4, induced PS exposure and the release of small PS- and large PS+ REVs through LPA3 receptor signalling in RBCs. The release of large PS+ REVs required higher concentrations of LPA. RBCs were not activated by LPA 20:4. Interestingly, blockade of LPA2 enhanced LPA-mediated PS- REV release in RBCs. Furthermore, LPA receptor agonists and antagonists highlighted that LPA 20:4 inhibited LPA3-dependent PS exposure and, through the LPA2 receptor, inhibited PS- REV production. Activation of RBCs with LPA 18:1 in normal plasma stimulated the release of PS- and PS+ REVs. REVs released in response to LPA were similar to those found in the plasma of systemic lupus erythematosus patients. Our results suggest that LPA species exhibit different biological activities in RBCs through targeting LPA2 and/or LPA3 receptors.


Assuntos
Membrana Celular/metabolismo , Eritrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Lisofosfolipídeos/farmacologia , Fosfatidilserinas/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Membrana Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Feminino , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Masculino
4.
Blood ; 138(25): 2607-2620, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34293122

RESUMO

In addition to their hemostatic role, platelets play a significant role in immunity. Once activated, platelets release extracellular vesicles (EVs) formed by the budding of their cytoplasmic membranes. Because of their heterogeneity, platelet EVs (PEVs) are thought to perform diverse functions. It is unknown, however, whether the proteasome is transferred from platelets to PEVs or whether its function is retained. We hypothesized that functional protein processing and antigen presentation machinery are transferred to PEVs by activated platelets. Using molecular and functional assays, we found that the active 20S proteasome was enriched in PEVs, along with major histocompatibility complex class I (MHC-I) and lymphocyte costimulatory molecules (CD40L and OX40L). Proteasome-containing PEVs were identified in healthy donor blood, but did not increase in platelet concentrates that caused adverse transfusion reactions. They were augmented, however, after immune complex injections in mice. The complete biodistribution of murine PEVs after injection into mice revealed that they principally reached lymphoid organs, such as spleen and lymph nodes, in addition to the bone marrow, and to a lesser extent, liver and lungs. The PEV proteasome processed exogenous ovalbumin (OVA) and loaded its antigenic peptide onto MHC-I molecules, which promoted OVA-specific CD8+ T-lymphocyte proliferation. These results suggest that PEVs contribute to adaptive immunity through cross-presentation of antigens and have privileged access to immune cells through the lymphatic system, a tissue location that is inaccessible to platelets.


Assuntos
Plaquetas/imunologia , Vesículas Extracelulares/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Apresentação de Antígeno , Plaquetas/química , Vesículas Extracelulares/química , Antígenos de Histocompatibilidade Classe I/análise , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/análise
5.
Prog Lipid Res ; 83: 101112, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34166709

RESUMO

Various human tissues and cells express phospholipase A1 member A (PLA1A), including the liver, lung, prostate gland, and immune cells. The enzyme belongs to the pancreatic lipase family. PLA1A specifically hydrolyzes sn-1 fatty acid of phosphatidylserine (PS) or 1-acyl-lysophosphatidylserine (1-acyl-lysoPS). PS externalized by activated cells or apoptotic cells or extracellular vesicles is a potential source of substrate for the production of unsaturated lysoPS species by PLA1A. Maturation and functions of many immune cells, such as T cells, dendritic cells, macrophages, and mast cells, can be regulated by PLA1A and lysoPS. Several lysoPS receptors, including GPR34, GPR174 and P2Y10, have been identified. High serum levels and high PLA1A expression are associated with autoimmune disorders such as Graves' disease and systemic lupus erythematosus. Increased expression of PLA1A is associated with metastatic melanomas. PLA1A may contribute to cardiometabolic disorders through mediating cholesterol transportation and producing lysoPS. Furthermore, PLA1A is necessary for hepatitis C virus assembly and can play a role in the antivirus innate immune response. This review summarizes recent findings on PLA1A expression, lysoPS and lysoPS receptors in autoimmune disorders, cancers, cardiometabolic disorders, antivirus immune responses, as well as regulations of immune cells.


Assuntos
Melanoma , Neoplasias Cutâneas , Ácidos Graxos , Humanos , Lisofosfolipídeos , Masculino , Fosfatidilserinas , Fosfolipases A1
6.
Biochem Pharmacol ; 164: 74-81, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30928673

RESUMO

Lysophosphatidic acid (LPA) is a well-characterized bioactive lipid mediator, which is involved in development, physiology, and pathological processes of the cardiovascular system. LPA can be produced both inside cells and in biological fluids. The majority of extracellularLPAis produced locally by the secreted lysophospholipase D, autotaxin (ATX), through its binding to various ß integrins or heparin sulfate on cell surface and hydrolyzing various lysophospholipids. LPA initiates cellular signalling pathways upon binding to and activation of its G protein-coupled receptors (LPA1-6). LPA has potent effects on various blood cells and vascular cells involved in the development of cardiovascular diseases such as atherosclerosis and aortic valve sclerosis. LPA signalling drives cell migration and proliferation, cytokine production, thrombosis, fibrosis, as well as angiogenesis. For instance, LPA promotes activation and aggregation of platelets through LPA5, increases expression of adhesion molecules in endothelial cells, and enhances expression of tissue factor in vascular smooth muscle cells. Furthermore, LPA induces differentiation of monocytes into macrophages and stimulates oxidized low-density lipoproteins (oxLDLs) uptake by macrophages to form foam cells during formation of atherosclerotic lesions through LPA1-3. This review summarizes recent findings of the roles played by ATX, LPA and LPA receptors (LPARs) in atherosclerosis and calcific aortic valve disease. Targeting the ATX-LPAR axis may have potential applications for treatment of patients suffering from various cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Diester Fosfórico Hidrolases/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Sistemas de Liberação de Medicamentos/tendências , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA