Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38775097

RESUMO

Background: Throughout the Americas, Lyssavirus rabies (RV) perpetuates as multiple variants among bat and mesocarnivore species. Interspecific RV spillover occurs on occasion, but clusters and viral host shifts are rare. The spillover and host shift of a big brown bat (Eptesicus fuscus) RV variant Ef-W1 into mesocarnivores was reported previously on several occasions during 2001-2009 in Flagstaff, Arizona, USA, and controlled through rabies vaccination of target wildlife. During autumn 2021, a new cluster of Ef-W1 RV cases infecting striped skunks (Mephitis mephitis) was detected from United States Department of Agriculture enhanced rabies surveillance in Flagstaff. The number of Ef-W1 RV spillover cases within a short timeframe suggested the potential for transmission between skunks and an emerging host shift. Materials and Methods: Whole and partial RV genomic sequencing was performed to evaluate the phylogenetic relationships of the 2021-2023 Ef-W1 cases infecting striped skunks with earlier outbreaks. Additionally, real-time reverse-transcriptase PCR (rtRT-PCR) was used to opportunistically compare viral RNA loads in brain and salivary gland tissues of naturally infected skunks. Results: Genomic RV sequencing revealed that the origin of the 2021-2023 epizootic of Ef-W1 RV was distinct from the multiple outbreaks detected from 2001-2009. Naturally infected skunks with the Ef-W1 RV showed greater viral RNA loads in the brain, but equivalent viral RNA loads in the mandibular salivary glands, compared to an opportunistic sample of skunks naturally infected with a South-Central skunk RV from northern Colorado, USA. Conclusion: Considering a high risk for onward transmission and spread of the Ef-W1 RV in Flagstaff, public outreach, enhanced rabies surveillance, and control efforts, focused on education, sample characterization, and vaccination, have been ongoing since 2021 to mitigate and prevent the spread and establishment of Ef-W1 RV in mesocarnivores.

2.
PLoS One ; 19(1): e0294122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38261561

RESUMO

It is not possible to systematically screen the environment for rabies virus (RABV) using current approaches. We sought to determine under what conditions RABV is detectable from feces and other accessible samples from infected wildlife to broaden the number of biological samples that could be used to test for RABV. We employed a recently-developed quantitative RT-PCR assay called the "LN34 panlyssavirus real-time RT-PCR assay", which is highly sensitive and specific for all variants of RABV. We harvested and tested brain tissue, fecal, and/or mouth swab samples from 25 confirmed RABV positive bats of six species. To determine if rabies RNA lasts in feces sufficiently long post-defecation to use it as a surveillance tool, we tested fecal samples from 10 bats at the time of sample collection and after 24 hours of exposure to ambient conditions, with an additional test on six bats out to 72 hours. To assess whether we could pool fecal pellets and still detect a positive, we generated dilutions of known positives at 1:1, 1:10, 1:50, and 1:200. For six individuals for which matched brain, mouth swab, and fecal samples were tested, results were positive for 100%, 67%, and 67%, respectively. For the first time test to 24 hours, 63% of feces that were positive at time 0 were still positive after 24 hours, and 50% of samples at 72 hours were positive across all three replicates. Pooling tests revealed that fecal positives were detected at 1:10 dilution, but not at 1:50 or 1:200. Our preliminary results suggest that fecal samples hold promise for a rapid and non-invasive environmental screening system.


Assuntos
Líquidos Corporais , Quirópteros , Lepidópteros , Vírus da Raiva , Raiva , Humanos , Animais , Fezes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA