Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 157, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997110

RESUMO

The objective of this work was to assess the consequences of repeated intra-articular injection of monosodium urate (MSU) crystals with inflammasome priming by lipopolysaccharide (LPS) in order to simulate recurrent bouts of gout in rats. Translational imaging was applied to simultaneously detect and quantify injury in different areas of the knee joint. MSU/LPS induced joint swelling, synovial membrane thickening, fibrosis of the infrapatellar fat pad, tidemark breaching, and cartilage invasion by inflammatory cells. A higher sensitivity to mechanical stimulus was detected in paws of limbs receiving MSU/LPS compared to saline-injected limbs. In MSU/LPS-challenged joints, magnetic resonance imaging (MRI) revealed increased synovial fluid volume in the posterior region of the joint, alterations in the infrapatellar fat pad reflecting a progressive decrease of fat volume and fibrosis formation, and a significant increase in the relaxation time T2 in femoral cartilage, consistent with a reduction of proteoglycan content. MRI also showed cyst formation in the tibia, femur remodeling, and T2 reductions in extensor muscles consistent with fibrosis development. Repeated intra-articular MSU/LPS injections in the rat knee joint induced pathology in multiple tissues and may be a useful means to investigate the relationship between urate crystal deposition and the development of degenerative joint disease.


Assuntos
Artrite Gotosa/diagnóstico por imagem , Articulações/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ácido Úrico , Animais , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/metabolismo , Artrite Gotosa/patologia , Biópsia , Cristalização , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Mediadores da Inflamação/metabolismo , Injeções Intra-Articulares , Articulações/metabolismo , Articulações/patologia , Lipopolissacarídeos , Valor Preditivo dos Testes , Ratos , Ratos Endogâmicos Lew , Líquido Sinovial/metabolismo , Fatores de Tempo , Pesquisa Translacional Biomédica , Microtomografia por Raio-X
2.
Am J Physiol Renal Physiol ; 319(3): F436-F446, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32686522

RESUMO

Weakness of urinary sphincter and pelvic floor muscles can cause insufficient urethral closure and lead to stress urinary incontinence. Bimagrumab is a novel myostatin inhibitor that blocks activin type II receptors, inducing skeletal muscle hypertrophy and attenuating muscle weakness. ß2-Adrenergic agonists, such as 5-hydroxybenzothiazolone derivative (5-HOB) and clenbuterol, can enhance muscle growth. We hypothesized that promoting muscle growth would increase leak point pressure (LPP) by facilitating muscle recovery in a dual-injury (DI) stress urinary incontinence model. Rats underwent pudendal nerve crush (PNC) followed by vaginal distension (VD). One week after injury, each rat began subcutaneous (0.3 mL/rat) treatment daily in a blinded fashion with either bimagrumab (DI + Bim), clenbuterol (DI + Clen), 5-HOB (DI + 5-HOB), or PBS (DI + PBS). Sham-injured rats underwent sham PNC + VD and received PBS (sham + PBS). After 2 wk of treatment, rats were anesthetized for LPP and external urethral sphincter electromyography recordings. Hindlimb skeletal muscles and pelvic floor muscles were dissected and stained. At the end of 2 wk of treatment, all three treatment groups had a significant increase in body weight and individual muscle weight compared with both sham-treated and sham-injured rats. LPP in DI + Bim rats was significantly higher than LPP of DI + PBS and DI + Clen rats. There were more consistent urethral striated muscle fibers, elastin fibers in the urethra, and pelvic muscle recovery in DI + Bim rats compared with DI + PBS rats. In conclusion, bimagrumab was the most effective for increasing urethral pressure and continence by promoting injured external urethral sphincter and pelvic floor muscle recovery.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Clembuterol/uso terapêutico , Incontinência Urinária por Estresse/tratamento farmacológico , Incontinência Urinária/tratamento farmacológico , Agonistas Adrenérgicos beta/uso terapêutico , Animais , Feminino , Músculo Liso , Ratos , Ratos Sprague-Dawley
3.
J Cachexia Sarcopenia Muscle ; 11(1): 195-207, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31436048

RESUMO

BACKGROUND: The majority of patients with advanced cancer develop cachexia, a weight loss syndrome that severely reduces quality of life and limits survival. Our understanding of the underlying mechanisms that cause the condition is limited, and there are currently no treatment options that can completely reverse cachexia. Several tumour-derived factors and inflammatory mediators have been suggested to contribute to weight loss in cachectic patients. However, inconsistencies between studies are recurrent. Activin A and interleukin 6 (IL-6) are among the best studied factors that seem to be important, and several studies support their individual role in cachexia development. METHODS: We investigated the interplay between activin A and IL-6 in the cachexia-inducing TOV21G cell line, both in culture and in tumours in mice. We previously found that the human TOV21G cells secrete IL-6 that induces autophagy in reporter cells and cachexia in mice. Using this established cachexia cell model, we targeted autocrine activin A by genetic, chemical, and biological approaches. The secretion of IL-6 from the cancer cells was determined in both culture and tumour-bearing mice by a species-specific ELISA. Autophagy reporter cells were used to monitor the culture medium for autophagy-inducing activities, and muscle mass changes were evaluated in tumour-bearing mice. RESULTS: We show that activin A acts in an autocrine manner to promote the synthesis and secretion of IL-6 from cancer cells. By inhibiting activin A signalling, the production of IL-6 from the cancer cells is reduced by 40-50% (up to 42% reduction on protein level, P = 0.0048, and 48% reduction on mRNA level, P = 0.0308). Significantly reduced IL-6 secretion (P < 0.05) from the cancer cells is consistently observed when using biological, chemical, and genetic approaches to interfere with the autocrine activin A loop. Inhibiting activin signalling also reduces the ability of the cancer cells to accelerate autophagy in non-cancerous cells (up to 43% reduced autophagy flux, P = 0.0006). Coherent to the in vitro data, the use of an anti-activin receptor 2 antibody in cachectic tumour-bearing mice reduces serum levels of cancer cell-derived IL-6 by 62% (from 417 to 159 pg/mL, P = 0.03), and, importantly, it reverses cachexia and counteracts loss of all measured muscle groups (P < 0.0005). CONCLUSIONS: Our data support a functional link between activin A and IL-6 signalling pathways and indicate that interference with activin A-induced IL-6 secretion from the tumour has therapeutic potential for cancer-induced cachexia.


Assuntos
Ativinas/metabolismo , Comunicação Autócrina/fisiologia , Autofagia/genética , Caquexia/genética , Interleucina-6/metabolismo , Neoplasias Ovarianas/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Transdução de Sinais
4.
Heliyon ; 5(11): e02849, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31768440

RESUMO

OBJECTIVE: To identify an agonist of RXRα and RARα with reduced undesired profiles of all-trans retinoic acid for differentiation-inducing therapy of acute promyelocytic leukemia (APL), such as its susceptibility to P450 enzyme, induction of P450 enzyme, increased sequestration by cellular retinoic acid binding protein and increased expression of P-glycoprotein, a virtual screening was performed. RESULTS AND CONCLUSION: In this study, a phenyl-thiazolyl-benzoic acid derivative (PTB) was identified as a potent agonist of RXRα and RARα. PTB was characterized in nuclear receptor binding, reporter gene, cell differentiation and cell growth assays. PTB bound directly to RXRα and RARα, but not to PPARα, δ(ß) or γ. PTB fully activated reporter genes with enhancer elements for RXRα/RXRα, and partially activated reporter genes with enhancer elements for RARα/RXRα, PPARδ(ß) and PPARγ. Furthermore, PTB induced differentiation and inhibited the growth of human APL cells. Thus, PTB is a novel dual agonist of RXRα and RARα and works as both a differentiation inducer and a proliferation inhibitor to leukemic cells.

5.
BMC Res Notes ; 12(1): 413, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307541

RESUMO

OBJECTIVE: 5-HOB is a novel tissue selective, 5-hydroxybenzothiazolone-derived ß2 adrenoceptor agonist with minimized cardiovascular effects while retaining efficacy on skeletal muscle in preclinical experiments unlike conventional ß2 adrenoceptor agonists, however its effect on the nervous system has not been evaluated yet. Therefore, 5-HOB was evaluated in a mouse model of neuropathic pain. RESULTS: 5-HOB alleviated neuropathic allodynia in a dose dependent manner and reversed the changes in hind paw withdrawal thresholds to the sham control levels. The dose attenuating neuropathic allodynia was slightly lower than the dose inducing skeletal muscle hypertrophy. In conclusion, as reported with known ß2 adrenoceptor agonists, 5-HOB was also effective in attenuating neuropathic pain in mice in addition to its effect on skeletal muscle.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Hiperalgesia/prevenção & controle , Neuralgia/prevenção & controle , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/química , Animais , Benzotiazóis/química , Benzotiazóis/farmacologia , Modelos Animais de Doenças , Humanos , Hiperalgesia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neuralgia/metabolismo , Medição da Dor/métodos
6.
BMC Res Notes ; 12(1): 347, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31215459

RESUMO

OBJECTIVE: A dual inhibitor of focal adhesion kinase (FAK) and insulin-like growth factor 1 receptor (IGF-1R), TAE226, was evaluated in a panel of cancer cell lines, MIA PaCa-2 human pancreatic tumor and 4T1 murine breast tumor models. The profiling data were generated during the drug discovery research prior to the first publication of TAE226 appeared in 2007 (Liu et al. in Mol Cancer Ther 6:1357-1367, 2007; Shi et al. in Mol Carcinog 46(6):488-496, 2007; Halder et al. in Cancer Res 67(22):10976-10983, 2007). RESULTS: In a panel of 37 cancer cell lines, TAE226 showed a mean GI50 value of 0.76 µmol/L. In the MIA PaCa-2 model, TAE226 inhibited phosphorylation of Y397-FAK and phosphorylation of S473-Akt as IGF-1R signaling in the cell culture in vitro and the tumor in mice. Oral administration of TAE226 induced tumor stasis at 30 mg/kg and tumor regression at 100 mg/kg in the subcutaneous tumor, and inhibited the orthotopic tumor growth in a dose-dependent manner. Similarly in the 4T1 model, TAE226 inhibited phosphorylation of Y397-FAK and S473-Akt in the cell culture in vitro and the tumor in mice. Oral administration of TAE226 inhibited the orthotopic tumor growth and metastasis to the lung in a dose-dependent manner. Thus, TAE226 represents a novel class of selective and small molecule kinase inhibitor with a potent in vivo activity.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Morfolinas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor IGF Tipo 1/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Morfolinas/farmacologia , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
BMC Res Notes ; 12(1): 200, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940182

RESUMO

OBJECTIVE: Therapeutic effects of focal adhesion kinase (FAK) inhibition using a small molecule inhibitor was evaluated in apolipoprotein E (apoE) knockout (KO) and low-density lipoprotein receptor (LDLr) KO mouse atherosclerosis models. RESULTS: The prevention trial consisted of an 8-week treatment with an FAK inhibitor concurrent treatment with a high fat (HF)/high cholesterol (HC) diet. The intervention trial consisted of 6- and 8-week treatment after 6- and 8-week pre-loading, respectively, of a HF/HC diet in apoE KO and LDLr KO mice, respectively. The inhibitor was admixed with a HF/HC diet and mice were given free access to the admixture. The FAK inhibitor exhibited marked inhibition against the development of the atherosclerosis in both of prevention and intervention trials at a dose of 0.03% without showing any remarkable toxic properties in biochemical examinations. These results indicated that FAK inhibition might be a possible candidate for novel therapeutic targets against atherosclerosis.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Receptores de LDL/deficiência , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout
8.
J Pharmacol Exp Ther ; 369(2): 188-199, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30819762

RESUMO

The anabolic effects of ß 2-adrenoceptor (ß 2-AR) agonists on skeletal muscle have been demonstrated in various species. However, the clinical use of ß 2-AR agonists for skeletal muscle wasting conditions has been limited by their undesired cardiovascular effects. Here, we describe the preclinical pharmacological profile of a novel 5-hydroxybenzothiazolone (5-HOB) derived ß 2-AR agonist in comparison with formoterol as a representative ß 2-AR agonist that have been well characterized. In vitro, 5-HOB has nanomolar affinity for the human ß 2-AR and selectivity over the ß 1-AR and ß 3-AR. 5-HOB also shows potent agonistic activity at the ß 2-AR in primary skeletal muscle myotubes and induces hypertrophy of skeletal muscle myotubes. Compared with formoterol, 5-HOB demonstrates comparable full-agonist activity on cAMP production in skeletal muscle cells and skeletal muscle tissue-derived membranes. In contrast, a greatly reduced intrinsic activity was determined in cardiomyocytes and cell membranes prepared from the rat heart. In addition, 5-HOB shows weak effects on chronotropy, inotropy, and vascular relaxation compared with formoterol. In vivo, 5-HOB significantly increases hind limb muscle weight in rats with attenuated effects on heart weight and ejection fraction, unlike formoterol. Furthermore, changes in cardiovascular parameters after bolus subcutaneous treatment in rats and rhesus monkeys are significantly lower with 5-HOB compared with formoterol. In conclusion, the pharmacological profile of 5-HOB indicates superior tissue selectivity compared with the conventional ß 2-AR agonist formoterol in preclinical studies and supports the notion that such tissue-selective agonists should be investigated for the safe treatment of muscle-wasting conditions without cardiovascular limiting effects.


Assuntos
Benzotiazóis/química , Benzotiazóis/farmacologia , Sistema Cardiovascular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Segurança , Agonistas de Receptores Adrenérgicos beta 2/efeitos adversos , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Anabolizantes/efeitos adversos , Anabolizantes/química , Anabolizantes/farmacologia , Anabolizantes/uso terapêutico , Animais , Benzotiazóis/efeitos adversos , Benzotiazóis/uso terapêutico , Células CHO , Cricetulus , Coração/efeitos dos fármacos , Humanos , Hipertrofia/tratamento farmacológico , Cinética , Macaca mulatta , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miócitos Cardíacos/efeitos dos fármacos , Ratos
9.
Biochem Biophys Res Commun ; 503(4): 2415-2420, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29969629

RESUMO

The majority of patients with advanced cancer suffer from cachexia, a systemic wasting syndrome, which subsequently impacts the tolerance to anti-cancer treatments, response to therapy, quality of life, and eventually, survival. Despite a high unmet medical need, there is currently no specific remedy available for an effective treatment of cachexia and its sequelae. A key feature of cachexia is the inexorable loss of skeletal muscle mass, which constitutes a main contributor to body weight loss and progressive functional impairments. Therefore, it's crucial to identify early readouts to detect and monitor the loss of muscle mass and function to initiate appropriate treatments timely. Here, we describe experimental cancer models using mouse (syngeneic) or human (xenograft) cancer cell lines with a rapid onset of tumor growth and cachexia. These models are easier to establish, monitor and reproduce compared to the genetically engineered mouse models currently available. Moreover, we establish readouts such as hind limb muscle mass and volume, as well as evoked force and food intake measurements, to allow the evaluation of potential therapeutic agents for the early treatment of cachexia and associated impairments.


Assuntos
Caquexia/etiologia , Caquexia/patologia , Músculo Esquelético/patologia , Neoplasias/complicações , Animais , Peso Corporal , Caquexia/diagnóstico por imagem , Linhagem Celular Tumoral , Neoplasias do Colo/complicações , Modelos Animais de Doenças , Humanos , Extremidade Inferior/diagnóstico por imagem , Imageamento por Ressonância Magnética , Melanoma/complicações , Camundongos , Músculo Esquelético/diagnóstico por imagem
10.
Nat Commun ; 8(1): 1707, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167426

RESUMO

Cancer cachexia is a devastating metabolic syndrome characterized by systemic inflammation and massive muscle and adipose tissue wasting. Although it is responsible for approximately one-third of cancer deaths, no effective therapies are available and the underlying mechanisms have not been fully elucidated. We previously identified the bromodomain and extra-terminal domain (BET) protein BRD4 as an epigenetic regulator of muscle mass. Here we show that the pan-BET inhibitor (+)-JQ1 protects tumor-bearing mice from body weight loss and muscle and adipose tissue wasting. Remarkably, in C26-tumor-bearing mice (+)-JQ1 administration dramatically prolongs survival, without directly affecting tumor growth. By ChIP-seq and ChIP analyses, we unveil that BET proteins directly promote the muscle atrophy program during cachexia. In addition, BET proteins are required to coordinate an IL6-dependent AMPK nuclear signaling pathway converging on FoxO3 transcription factor. Overall, these findings indicate that BET proteins may represent a promising therapeutic target in the management of cancer cachexia.


Assuntos
Caquexia/prevenção & controle , Neoplasias Experimentais/terapia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Azepinas/farmacologia , Caquexia/genética , Caquexia/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Epigênese Genética , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-6/metabolismo , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/prevenção & controle , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Triazóis/farmacologia
11.
Sci Rep ; 7(1): 2046, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28515477

RESUMO

The majority of cancer patients with advanced disease experience weight loss, including loss of lean body mass. Severe weight loss is characteristic for cancer cachexia, a condition that significantly impairs functional status and survival. The underlying causes of cachexia are incompletely understood, and currently no therapeutic approach can completely reverse the condition. Autophagy coordinates lysosomal destruction of cytosolic constituents and is systemically induced by starvation. We hypothesized that starvation-mimicking signaling compounds secreted from tumor cells may cause a systemic acceleration of autophagy during cachexia. We found that IL-6 secreted by tumor cells accelerates autophagy in myotubes when complexed with soluble IL-6 receptor (trans-signaling). In lung cancer patients, were cachexia is prevalent, there was a significant correlation between elevated IL-6 expression in the tumor and poor prognosis of the patients. We found evidence for an autophagy-inducing bioactivity in serum from cancer patients and that this is clearly associated with weight loss. Importantly, the autophagy-inducing bioactivity was reduced by interference with IL-6 trans-signaling. Together, our findings suggest that IL-6 trans-signaling may be targeted in cancer cachexia.


Assuntos
Autofagia , Caquexia/etiologia , Caquexia/metabolismo , Interleucina-6/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-6/sangue , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Camundongos , Músculo Esquelético/metabolismo , Prognóstico , Redução de Peso
12.
Skelet Muscle ; 6: 26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27462398

RESUMO

BACKGROUND: Cachexia affects the majority of patients with advanced cancer and is associated with reduced treatment tolerance, response to therapy, quality of life, and life expectancy. Cachectic patients with advanced cancer often receive anti-cancer therapies against their specific cancer type as a standard of care, and whether specific ActRII inhibition is efficacious when combined with anti-cancer agents has not been elucidated yet. METHODS: In this study, we evaluated interactions between ActRII blockade and anti-cancer agents in CT-26 mouse colon cancer-induced cachexia model. CDD866 (murinized version of bimagrumab) is a neutralizing antibody against the activin receptor type II (ActRII) preventing binding of ligands such as myostatin and activin A, which are involved in cancer cachexia. CDD866 was evaluated in association with cisplatin as a standard cytotoxic agent or with everolimus, a molecular-targeted agent against mammalian target of rapamycin (mTOR). In the early studies, the treatment effect on cachexia was investigated, and in the additional studies, the treatment effect on progression of cancer and the associated cachexia was evaluated using body weight loss or tumor volume as interruption criteria. RESULTS: Cisplatin accelerated body weight loss and tended to exacerbate skeletal muscle loss in cachectic animals, likely due to some toxicity of this anti-cancer agent. Administration of CDD866 alone or in combination with cisplatin protected from skeletal muscle weight loss compared to animals receiving only cisplatin, corroborating that ActRII inhibition remains fully efficacious under cisplatin treatment. In contrast, everolimus treatment alone significantly protected the tumor-bearing mice against skeletal muscle weight loss caused by CT-26 tumor. CDD866 not only remains efficacious in the presence of everolimus but also showed a non-significant trend for an additive effect on reversing skeletal muscle weight loss. Importantly, both combination therapies slowed down time-to-progression. CONCLUSIONS: Anti-ActRII blockade is an effective intervention against cancer cachexia providing benefit even in the presence of anti-cancer therapies. Co-treatment comprising chemotherapies and ActRII inhibitors might constitute a promising new approach to alleviate chemotherapy- and cancer-related wasting conditions and extend survival rates in cachectic cancer patients.


Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Receptores de Activinas Tipo II/metabolismo , Anticorpos Bloqueadores/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Caquexia/prevenção & controle , Neoplasias do Colo/complicações , Receptores de Activinas Tipo II/imunologia , Animais , Anticorpos Monoclonais Humanizados , Peso Corporal/efeitos dos fármacos , Caquexia/etiologia , Cisplatino/administração & dosagem , Modelos Animais de Doenças , Progressão da Doença , Everolimo/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral/efeitos dos fármacos
13.
PLoS One ; 10(6): e0129838, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090892

RESUMO

TAE226, a bis-anilino pyrimidine compound, has been developed as an inhibitor of focal adhesion kinase (FAK) and insulin-like growth factor-I receptor (IGF-IR). In this study, we investigated the effect of TAE226 on non-small-cell lung cancer (NSCLC), especially focusing on the EGFR mutational status. TAE226 was more effective against cells with mutant EGFR, including the T790M mutant, than against cells with wild-type one. TAE226 preferentially inhibited phospho-EGFR and its downstream signaling mediators in the cells with mutant EGFR than in those with wild-type one. Phosphorylation of FAK and IGF-IR was not inhibited at the concentration at which the proliferation of EGFR-mutant cells was inhibited. Results of the in vitro binding assay indicated significant differences in the affinity for TAE226 between the wild-type and L858R (or delE746_A750) mutant, and the reduced affinity of ATP to the L858R (or delE746_A750) mutant resulted in good responsiveness of the L858R (or delE746_A750) mutant cells to TAE226. Of interest, the L858R/T790M or delE746_A750/T790M mutant enhanced the binding affinity for TAE226 compared with the L858R or delE746_A750 mutant, resulting in the effectiveness of TAE226 against T790M mutant cells despite the T790M mutation restoring the ATP affinity for the mutant EGFR close to that for the wild-type. TAE226 also showed higher affinity of about 15-fold for the L858R/T790M mutant than for the wild-type one by kinetic interaction analysis. The anti-tumor effect against EGFR-mutant tumors including T790M mutation was confirmed in mouse models without any significant toxicity. In summary, we showed that TAE226 inhibited the activation of mutant EGFR and exhibited anti-proliferative activity against NSCLCs carrying EGFR mutations, including T790M mutation.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Morfolinas/farmacologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Gefitinibe , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Quinazolinas/farmacologia , Receptor IGF Tipo 1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
PLoS One ; 9(1): e83618, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404136

RESUMO

BACKGROUND: Cachexia affects the majority of patients with advanced cancer and is associated with a reduction in treatment tolerance, response to therapy, and duration of survival. One impediment towards the effective treatment of cachexia is a validated classification system. METHODS: 41 patients with resectable upper gastrointestinal (GI) or pancreatic cancer underwent characterisation for cachexia based on weight-loss (WL) and/or low muscularity (LM). Four diagnostic criteria were used >5%WL, >10%WL, LM, and LM+>2%WL. All patients underwent biopsy of the rectus muscle. Analysis included immunohistochemistry for fibre size and type, protein and nucleic acid concentration, Western blots for markers of autophagy, SMAD signalling, and inflammation. FINDINGS: Compared with non-cachectic cancer patients, patients with LM or LM+>2%WL, mean muscle fibre diameter was reduced by about 25% (p = 0.02 and p = 0.001 respectively). No significant difference in fibre diameter was observed if patients had WL alone. Regardless of classification, there was no difference in fibre number or proportion of fibre type across all myosin heavy chain isoforms. Mean muscle protein content was reduced and the ratio of RNA/DNA decreased in patients with either >5%WL or LM+>2%WL. Compared with non-cachectic patients, SMAD3 protein levels were increased in patients with >5%WL (p = 0.022) and with >10%WL, beclin (p = 0.05) and ATG5 (p = 0.01) protein levels were increased. There were no differences in phospho-NFkB or phospho-STAT3 levels across any of the groups. CONCLUSION: Muscle fibre size, biochemical composition and pathway phenotype can vary according to whether the diagnostic criteria for cachexia are based on weight loss alone, a measure of low muscularity alone or a combination of the two. For intervention trials where the primary end-point is a change in muscle mass or function, use of combined diagnostic criteria may allow identification of a more homogeneous patient cohort, reduce the sample size required and enhance the time scale within which trials can be conducted.


Assuntos
Caquexia/diagnóstico , Caquexia/etiologia , Músculo Esquelético/patologia , Neoplasias/complicações , Fenótipo , Idoso , Autofagia , Biomarcadores , Índice de Massa Corporal , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Redução de Peso
15.
Mol Cell Biol ; 34(4): 606-18, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24298022

RESUMO

The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings.


Assuntos
Receptores de Activinas Tipo II/imunologia , Ativinas/metabolismo , Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais/farmacologia , Hipertrofia/metabolismo , Mioblastos Esqueléticos/metabolismo , Receptores de Activinas Tipo II/metabolismo , Animais , Anticorpos Bloqueadores/metabolismo , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais Humanizados , Atrofia/imunologia , Atrofia/metabolismo , Diferenciação Celular/fisiologia , Humanos , Hipertrofia/patologia , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mioblastos Esqueléticos/imunologia , Transdução de Sinais/fisiologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
16.
Oral Oncol ; 48(11): 1159-70, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22766511

RESUMO

OBJECTIVES: Focal adhesion kinase (FAK) overexpression is frequently found in invasive and metastatic cancers, but its role in oral squamous cell carcinoma is not yet well understood. In order to seek therapies targeting oral squamous cell carcinoma, we developed the novel FAK Tyr(397) inhibitor TAE226 and investigated its anti-tumor effects and mechanisms. MATERIALS AND METHODS: Expression of phosphorylated FAK Tyr(397) was examined by immunohistochemical and immunoblot analysis. The effect of TAE226 on in vitro and in vivo studies were confirmed by proliferation, cell cycle, apoptosis and angiogenesis analysis. RESULTS: We found that phosphorylated FAK was highly expressed in human tongue oral squamous cell carcinoma in patients. Importantly, TAE226 greatly suppressed the proliferation, migration and invasion of human oral squamous cell carcinoma SAS cells with an apparent structural change of actin fiber and a loss of cell adhesion. In addition, TAE226 inhibited the expression of phospho-FAK Tyr(397) and phospho AKT Ser(473), resulting in caspase-mediated apoptosis. Furthermore, oral administration of TAE226 in mice suppressed the growth and angiogenesis of oral squamous cell carcinoma xenografts in vivo. CONCLUSIONS: Our results provide compelling evidence that FAK is critically involved in oral squamous cell carcinoma and that the FAK inhibitor TAE226 can potentially be effectively used for the treatment of oral squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Morfolinas/farmacologia , Neoplasias Bucais/metabolismo , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores
17.
Mol Cell Biol ; 32(14): 2871-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22586266

RESUMO

Brown adipose tissue (BAT) is a key tissue for energy expenditure via fat and glucose oxidation for thermogenesis. In this study, we demonstrate that the myostatin/activin receptor IIB (ActRIIB) pathway, which serves as an important negative regulator of muscle growth, is also a negative regulator of brown adipocyte differentiation. In parallel to the anticipated hypertrophy of skeletal muscle, the pharmacological inhibition of ActRIIB in mice, using a neutralizing antibody, increases the amount of BAT without directly affecting white adipose tissue. Mechanistically, inhibition of ActRIIB inhibits Smad3 signaling and activates the expression of myoglobin and PGC-1 coregulators in brown adipocytes. Consequently, ActRIIB blockade in brown adipose tissue enhances mitochondrial function and uncoupled respiration, translating into beneficial functional consequences, including enhanced cold tolerance and increased energy expenditure. Importantly, ActRIIB inhibition enhanced energy expenditure only at ambient temperature or in the cold and not at thermoneutrality, where nonshivering thermogenesis is minimal, strongly suggesting that brown fat activation plays a prominent role in the metabolic actions of ActRIIB inhibition.


Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Adipogenia/fisiologia , Tecido Adiposo Marrom/metabolismo , Termogênese/fisiologia , Receptores de Activinas Tipo II/imunologia , Receptores de Activinas Tipo II/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/ultraestrutura , Animais , Anticorpos Neutralizantes , Diferenciação Celular , Metabolismo Energético , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo , Fatores de Transcrição/metabolismo
18.
Epilepsia ; 52(7): 1331-40, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21635236

RESUMO

PURPOSE: To assess the pharmacology of perampanel and its antiseizure activity in preclinical models. Perampanel [2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl) benzonitrile] is a novel, orally active, prospective antiepileptic agent currently in development for refractory partial-onset seizures. METHODS: Perampanel pharmacology was assessed by examining changes in intracellular free Ca(2+) ion concentration ([Ca(2+) ](i) ) in primary rat cortical neurones, and [(3) H]perampanel binding to rat forebrain membranes. Antiseizure activity of orally administered perampanel was examined in amygdala-kindled rats and in mice exhibiting audiogenic, maximal electroshock (MES)-induced, pentylenetetrazole (PTZ) -induced, or 6 Hz-induced seizures. KEY FINDINGS: In cultured rat cortical neurones, perampanel inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced increases in [Ca(2+) ](i) (IC(50) 93 nm vs. 2 µm AMPA). Perampanel had a minimal effect on N-methyl-d-aspartate (NMDA)-induced increases in [Ca(2+) ](i) , and only at a high concentration (30 µm). [(3) H]Perampanel binding to rat forebrain membranes was not significantly displaced by glutamate or AMPA but was displaced by the noncompetitive AMPA receptor antagonists CP465022 (K(i) 11.2 ± 0.8 nm) and GYKI52466 (K(i) 12.4 ± 1 µm). In mice, perampanel showed protective effects against audiogenic, MES-induced, and PTZ-induced seizures (ED(50) s 0.47, 1.6, and 0.94 mg/kg, respectively). Perampanel also inhibited 6 Hz electroshock-induced seizures when administered alone or in combination with other antiepileptic drugs (AEDs). In amygdala-kindled rats, perampanel significantly increased afterdischarge threshold (p<0.05 vs. vehicle), and significantly reduced motor seizure duration, afterdischarge duration, and seizure severity recorded at 50% higher intensity than afterdischarge threshold current (p<0.05 for all measures vs. vehicle). Perampanel caused dose-dependent motor impairment in both mice (TD(50) 1.8 mg/kg) and rats (TD(50) 9.14 mg/kg), as determined by rotarod tests. In mice, the protective index (TD(50) in rotarod test/ED(50) in seizure test) was 1.1, 3.8, and 1.9 for MES-induced, audiogenic, and PTZ-induced seizures, respectively. In rat, dog, and monkey, perampanel had a half-life of 1.67, 5.34, and 7.55 h and bioavailability of 46.1%, 53.5%, and 74.5%, respectively. SIGNIFICANCE: These data suggest that perampanel is an orally active, noncompetitive, selective AMPA receptor antagonist with potential as a broad spectrum antiepileptic agent.


Assuntos
Anticonvulsivantes/uso terapêutico , Piridonas/uso terapêutico , Receptores de AMPA/antagonistas & inibidores , Convulsões/tratamento farmacológico , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiopatologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cálcio/análise , Células Cultivadas , Modelos Animais de Doenças , Cães , Espaço Intracelular/química , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nitrilas , Ratos , Ratos Sprague-Dawley , Ratos Wistar
19.
Anticancer Drugs ; 22(5): 454-62, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21389848

RESUMO

Survivin, an apoptotic inhibitor, is overexpressed in the majority of human tumor types and represents a novel target for anticancer therapy. Taxanes induce a mitotic cell-cycle block through the inhibition of microtubule depolymerization, with subsequent elevated expression/stabilization of survivin. We investigated the administration of survivin suppressant YM155 monobromide (YM155), in combination with docetaxel, in a human non-small-cell lung cancer (NSCLC) xenograft model. Animals received a 7-day continuous infusion of YM155, 2 mg/kg, and/or three bolus doses of docetaxel, 20 mg/kg, according to three dosing schedules: YM155 administered concomitantly with docetaxel, before docetaxel, and after docetaxel. YM155 administered either concomitantly with or before docetaxel showed significant antitumor activity (tumor regression ≥ 99%), with complete regression of the established human NSCLC-derived tumors in mice (eight of eight and seven of eight animals, respectively). Significantly fewer complete responses (three of eight animals) were achieved when YM155 was administered after docetaxel. No statistically significant decreases in body weight were observed in the combination versus docetaxel groups. YM155 administered concomitantly with docetaxel resulted in significant decreases in mitotic and proliferative indices, and in a significant increase in the apoptosis index. Elevated survivin expression was seen in tumors from mice treated with docetaxel alone; a significant reduction in survivin expression was seen in tumors from mice treated with YM155 alone or in combination with docetaxel, but not in the control group. These results indicate that in a human NSCLC xenograft model YM155 in combination with docetaxel diminished the accumulation of survivin by docetaxel and induced more intense apoptosis and enhanced antitumor activity, compared with single-agent YM155 or docetaxel.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Imidazóis/farmacologia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Naftoquinonas/farmacologia , Taxoides/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Docetaxel , Sinergismo Farmacológico , Humanos , Imidazóis/administração & dosagem , Proteínas Inibidoras de Apoptose/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Mitose/efeitos dos fármacos , Naftoquinonas/administração & dosagem , Survivina , Taxoides/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Exp Cell Res ; 317(8): 1134-46, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21338601

RESUMO

Focal adhesion kinase (FAK) is a 125-kDa non-receptor type tyrosine kinase that localizes to focal adhesions. FAK overexpression is frequently found in invasive and metastatic cancers of the breast, colon, thyroid, and prostate, but its role in osteolytic metastasis is not well understood. In this study, we have analyzed anti-tumor effects of the novel FAK Tyr(397) inhibitor TAE226 against bone metastasis in breast cancer by using TAE226. Oral administration of TAE226 in mice significantly decreased bone metastasis and osteoclasts involved which were induced by MDA-MB-231 breast cancer cells and increased the survival rate of the mouse models of bone metastasis. TAE226 also suppressed the growth of subcutaneous tumors in vivo and the proliferation and migration of MDA-MB-231 cells in vitro. Significantly, TAE226 inhibited the osteoclast formation in murine pre-osteoclastic RAW264.7 cells, and actin ring and pit formation in mature osteoclasts. Moreover, TAE226 inhibited the receptor activator for nuclear factor κ B Ligand (RANKL) gene expression induced by parathyroid hormone-related protein (PTHrP) in bone stromal ST2 cells and blood free calcium concentration induced by PTHrP administration in vivo. These findings suggest that FAK was critically involved in osteolytic metastasis and activated in tumors, pre-osteoclasts, mature osteoclasts, and bone stromal cells and TAE226 can be effectively used for the treatment of cancer induced bone metastasis and other bone diseases.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Morfolinas/uso terapêutico , Receptor IGF Tipo 1/antagonistas & inibidores , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Linhagem Celular , Células Cultivadas , Feminino , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Morfolinas/farmacologia , Metástase Neoplásica , Transplante de Neoplasias , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Ligante RANK/metabolismo , Receptor IGF Tipo 1/genética , Células Estromais/citologia , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA