Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 475(2): 249-266, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044064

RESUMO

Elevated levels of the intracellular second messenger cAMP can stimulate intestinal oxalate secretion however the membrane transporters responsible are unclear. Oxalate transport by the chloride/bicarbonate (Cl-/HCO3-) exchanger Slc26a6 or PAT-1 (Putative Anion Transporter 1), is regulated via cAMP when expressed in Xenopus oocytes and cultured cells but whether this translates to the native epithelia is unknown. This study investigated the regulation of oxalate transport by the mouse intestine focusing on transport at the apical membrane hypothesizing PAT-1 is the target of a cAMP-dependent signaling pathway. Adopting the Ussing chamber technique we measured unidirectional 14C-oxalate and 36Cl- flux ([Formula: see text] and [Formula: see text]) across distal ileum, cecum and distal colon, employing forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX) to trigger cAMP production. FSK/IBMX initiated a robust secretory response by all segments but the stimulation of net oxalate secretion was confined to the cecum only involving activation of [Formula: see text] and distinct from net Cl- secretion produced by inhibiting [Formula: see text]. Using the PAT-1 knockout (KO) mouse we determined cAMP-stimulated [Formula: see text] was not directly dependent on PAT-1, but it was sensitive to mucosal DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid), although unlikely to be another Cl-/HCO3- exchanger given the lack of trans-stimulation or cis-inhibition by luminal Cl- or HCO3-. The cAMP-activated oxalate efflux was reliant on CFTR (Cystic Fibrosis Transmembrane conductance Regulator) activity, but only in the presence of PAT-1, leading to speculation on the involvement of a multi-transporter regulatory complex. Further investigations at the cellular and molecular level are necessary to define the mechanism and transporter(s) responsible.


Assuntos
Ceco , Proteínas de Membrana Transportadoras , Animais , Camundongos , 1-Metil-3-Isobutilxantina/farmacologia , 1-Metil-3-Isobutilxantina/metabolismo , Transporte de Íons , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Ceco/metabolismo , Cloretos/metabolismo , Oxalatos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Bicarbonatos/metabolismo , Transportadores de Sulfato/metabolismo , Antiporters/metabolismo
2.
Compr Physiol ; 12(1): 2835-2875, 2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34964122

RESUMO

Epithelial oxalate transport is fundamental to the role occupied by the gastrointestinal (GI) tract in oxalate homeostasis. The absorption of dietary oxalate, together with its secretion into the intestine, and degradation by the gut microbiota, can all influence the excretion of this nonfunctional terminal metabolite in the urine. Knowledge of the transport mechanisms is relevant to understanding the pathophysiology of hyperoxaluria, a risk factor in kidney stone formation, for which the intestine also offers a potential means of treatment. The following discussion presents an expansive review of intestinal oxalate transport. We begin with an overview of the fate of oxalate, focusing on the sources, rates, and locations of absorption and secretion along the GI tract. We then consider the mechanisms and pathways of transport across the epithelial barrier, discussing the transcellular, and paracellular components. There is an emphasis on the membrane-bound anion transporters, in particular, those belonging to the large multifunctional Slc26 gene family, many of which are expressed throughout the GI tract, and we summarize what is currently known about their participation in oxalate transport. In the final section, we examine the physiological stimuli proposed to be involved in regulating some of these pathways, encompassing intestinal adaptations in response to chronic kidney disease, metabolic acid-base disorders, obesity, and following gastric bypass surgery. There is also an update on research into the probiotic, Oxalobacter formigenes, and the basis of its unique interaction with the gut epithelium. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.


Assuntos
Intestinos , Proteínas de Membrana Transportadoras , Oxalatos , Trato Gastrointestinal/metabolismo , Humanos , Intestinos/metabolismo , Oxalatos/metabolismo , Oxalobacter formigenes/metabolismo
3.
Metabolites ; 11(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34065030

RESUMO

Paper spray ionization mass spectrometry (PSI-MS) is a direct MS analysis technique with several reported bacterial metabolomics applications. As with most MS-based bacterial studies, all currently reported PSI-MS bacterial analyses have focused on the chemical signatures of the cellular unit. One dimension of the bacterial metabolome that is often lost in such analyses is the exometabolome (extracellular metabolome), including secreted metabolites, lipids, and peptides. A key component of the bacterial exometabolome that is gaining increased attention in the microbiology and biomedical communities is extracellular vesicles (EVs). These excreted structures, produced by cells in all domains of life, contain a variety of biomolecules responsible for a wide array of cellular functions, thus representing a core component of the bacterial secreted metabolome. Although previously examined using other MS approaches, no reports currently exist for a PSI-MS analysis of bacterial EVs, nor EVs from any other organism (exosomes, ectosomes, etc.). PSI-MS holds unique analytical strengths over other commonly used MS platforms and could thus provide an advantageous approach to EV metabolomics. To address this, we report a novel application representing, to our knowledge, the first PSI-MS analysis of EVs from any organism (using the human gut resident Oxalobacter formigenes as the experimental model, a bacterium whose EVs were never previously investigated). In this report, we show how we isolated and purified EVs from bacterial culture supernatant by EV-specific affinity chromatography, confirmed and characterized these vesicles by nanoparticle tracking analysis, analyzed the EV isolate by PSI-MS, and identified a panel of EV-derived metabolites, lipids, and peptides. This work serves as a pioneering study in the field of MS-based EV analysis and provides a new, rapid, sensitive, and economical approach to EV metabolomics.

4.
Appl Environ Microbiol ; 87(18): e0054421, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34190610

RESUMO

Oxalobacter formigenes, a unique anaerobic bacterium that relies solely on oxalate for growth, is a key oxalate-degrading bacterium in the mammalian intestinal tract. Degradation of oxalate in the gut by O. formigenes plays a critical role in preventing renal toxicity in animals that feed on oxalate-rich plants. The role of O. formigenes in reducing the risk of calcium oxalate kidney stone disease and oxalate nephropathy in humans is less clear, in part due to difficulties in culturing this organism and the lack of studies which have utilized diets in which the oxalate content is controlled. Herein, we review the literature on the 40th anniversary of the discovery of O. formigenes, with a focus on its biology, its role in gut oxalate metabolism and calcium oxalate kidney stone disease, and potential areas of future research. Results from ongoing clinical trials utilizing O. formigenes in healthy volunteers and in patients with primary hyperoxaluria type 1 (PH1), a rare but severe form of calcium oxalate kidney stone disease, are also discussed. Information has been consolidated on O. formigenes strains and best practices to culture this bacterium, which should serve as a good resource for researchers.


Assuntos
Oxalatos/metabolismo , Oxalobacter formigenes , Animais , Microbioma Gastrointestinal , Genômica , Humanos , Inativação Metabólica , Metabolômica , Nefrolitíase , Oxalatos/urina , Oxalobacter formigenes/genética , Oxalobacter formigenes/metabolismo , Oxalobacter formigenes/fisiologia
5.
Physiol Rep ; 9(7): e14828, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33904662

RESUMO

Intestinal oxalate transport involves Cl- /HCO3- exchangers but how this transport is regulated is not currently known. NHE3 (Slc9a3), an apical Na+ /H+ exchanger, is an established target for regulation of electroneutral NaCl absorption working in concert with Cl- /HCO3- exchangers. To test whether NHE3 could be involved in regulation of intestinal oxalate transport and renal oxalate handling we compared urinary oxalate excretion rates and intestinal transepithelial fluxes of 14 C-oxalate and 22 Na+ between NHE3 KO and wild-type (WT) mice. NHE3 KO kidneys had lower creatinine clearance suggesting reduced GFR, but urinary oxalate excretion rates (µmol/24 h) were similar compared to the WT but doubled when expressed as a ratio of creatinine. Intestinal transepithelial fluxes of 14 C-oxalate and 22 Na+ were measured in the distal ileum, cecum, and distal colon. The absence of NHE3 did not affect basal net transport rates of oxalate or sodium across any intestinal section examined. Stimulation of intracellular cAMP with forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX) led to an increase in net oxalate secretion in the WT distal ileum and cecum and inhibition of sodium absorption in the cecum and distal colon. In NHE3 KO cecum, cAMP stimulation of oxalate secretion was impaired suggesting the possibility of a role for NHE3 in this process. Although, there is little evidence for a role of NHE3 in basal intestinal oxalate fluxes, NHE3 may be important for cAMP stimulation of oxalate in the cecum and for renal handling of oxalate.


Assuntos
Mucosa Intestinal/metabolismo , Oxalatos/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Colforsina/farmacologia , AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Transporte de Íons , Camundongos , Camundongos Endogâmicos C57BL , Oxalatos/urina , Trocador 3 de Sódio-Hidrogênio/genética
6.
Pflugers Arch ; 473(1): 95-106, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33205229

RESUMO

The membrane-bound transport proteins responsible for oxalate secretion across the large intestine remain unidentified. The apical chloride/bicarbonate (Cl-/HCO3-) exchanger encoded by Slc26a6, known as PAT-1 (putative anion transporter 1), is a potential candidate. In the small intestine, PAT-1 makes a major contribution to oxalate secretion but whether this role extends into the large intestine has not been directly tested. Using the PAT-1 knockout (KO) mouse, we compared the unidirectional absorptive ([Formula: see text]) and secretory ([Formula: see text]) flux of oxalate and Cl- across cecum, proximal colon, and distal colon from wild-type (WT) and KO mice in vitro. We also utilized the non-specific inhibitor DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid) to confirm a role for PAT-1 in WT large intestine and (in KO tissues) highlight any other apical anion exchangers involved. Under symmetrical, short-circuit conditions the cecum and proximal colon did not transport oxalate on a net basis, whereas the distal colon supported net secretion. We found no evidence for the participation of PAT-1, or indeed any other DIDS-sensitive transport mechanism, in oxalate or Cl- by the large intestine. Most unexpectedly, mucosal DIDS concurrently stimulated [Formula: see text] and [Formula: see text] by 25-68% across each segment without impacting net transport. For the colon, these changes were directly proportional to increased transepithelial conductance suggesting this response was the result of bidirectional paracellular flux. In conclusion, PAT-1 does not contribute to oxalate or Cl- transport by the large intestine, and we urge caution when using DIDS with mouse colonic epithelium.


Assuntos
Antiporters/metabolismo , Cloretos/metabolismo , Intestino Grosso/metabolismo , Oxalatos/metabolismo , Transportadores de Sulfato/metabolismo , Animais , Antiporters/genética , Transporte Biológico , Camundongos , Camundongos Knockout , Transportadores de Sulfato/genética
7.
Metabolomics ; 16(12): 122, 2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-33219444

RESUMO

INTRODUCTION: In the search for new potential therapies for pathologies of oxalate, such as kidney stone disease and primary hyperoxaluria, the intestinal microbiome has generated significant interest. Resident oxalate-degrading bacteria inhabit the gastrointestinal tract and reduce absorption of dietary oxalate, thereby potentially lowering the potency of oxalate as a risk factor for kidney stone formation. Although several species of bacteria have been shown to degrade oxalate, select strains of Oxalobacter formigenes (O. formigenes) have thus far demonstrated the unique ability among oxalotrophs to initiate a net intestinal oxalate secretion into the lumen from the bloodstream, allowing them to feed on both dietary and endogenous metabolic oxalate. There is significant interest in this function as a potential therapeutic application for circulating oxalate reduction, although its mechanism of action is still poorly understood. Since this species-exclusive, oxalate-regulating function is reported to be dependent on the use of a currently unidentified secreted bioactive compound, there is much interest in whether O. formigenes produces unique biochemicals that are not expressed by other oxalotrophs which lack the ability to transport oxalate. Hence, this study sought to analyze and compare the metabolomes of O. formigenes and another oxalate degrader, Bifidobacterium animalis subsp. lactis (B. animalis), to determine whether O. formigenes could produce features undetectable in another oxalotroph, thus supporting the theory of a species-exclusive secretagogue compound. METHODS: A comparative metabolomic analysis of O. formigenes strain HC1 (a human isolate) versus B. animalis, another oxalate-degrading human intestinal microbe, was performed by ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). Bacteria were cultured independently in anaerobic conditions, harvested, lysed, and extracted by protein precipitation. Metabolite extracts were chromatographically separated and analyzed by UHPLC-HRMS using reverse phase gradient elution (ACE Excel 2 C18-Pentafluorophenyl column) paired with a Q Exactive™ mass spectrometer. OBJECTIVES: The purpose of this study was to assess whether O. formigenes potentially produces unique biochemicals from other oxalate degraders to better understand its metabolic profile and provide support for the theoretical production of a species-exclusive secretagogue compound responsible for enhancing intestinal oxalate secretion. RESULTS: We report a panel of metabolites and lipids detected in the O. formigenes metabolome which were undetectable in B. animalis, several of which were identified either by mass-to-charge ratio and retention time matching to our method-specific metabolite library or MS/MS fragmentation. Furthermore, re-examination of data from our previous work showed most of these features were also undetected in the metabolomes of Lactobacillus acidophilus and Lactobacillus gasseri, two other intestinal oxalate degraders. CONCLUSIONS: Our observation of O. formigenes metabolites and lipids which were undetectable in other oxalotrophs suggests that this bacterium likely holds the ability to produce biochemicals not expressed by at least a selection of other oxalate degraders. These findings provide support for the hypothesized biosynthesis of a species-exclusive secretagogue responsible for the stimulation of net intestinal oxalate secretion.


Assuntos
Metabolismo dos Lipídeos , Metaboloma , Metabolômica , Oxalobacter formigenes/metabolismo , Bifidobacterium animalis/metabolismo , Cromatografia Líquida de Alta Pressão , Microbioma Gastrointestinal , Humanos , Oxalatos/metabolismo , Espectrometria de Massas em Tandem
8.
Metabolites ; 10(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33065971

RESUMO

Oxalobacter formigenes has been investigated for years due to its proposed ability to produce a secretagogue compound that initiates net intestinal oxalate secretion, thereby theoretically reducing circulating oxalate and risk of kidney stone formation. Strains which have been shown to exhibit this function in vivo across native tissue include the human strain, HC1, and the wild rat strain, OxWR. While previous work on these secretagogue-relevant strains has focused on profiling their metabolome and lipidome in vitro, efforts to characterize their influence on host intestinal mucosal biochemistry in vivo are yet to be reported. Much work has been done over the years with O. formigenes in relation to the secretagogue hypothesis, but it has never been clearly demonstrated that this microorganism is capable of inducing metabolic changes in native host tissue, which would be expected with the production of a transport-inducing compound. In this work, we show how the distal colonic mucosal metabolomic profile in a mouse model exhibited significant changes in the levels of a variety of metabolites as a result of oral gavage with O. formigenes HC1. Among these significant metabolites was nicotinic acid, an essential nutrient shown in past work to be produced in the gut by the native microbiome. Our finding that the in vivo biochemical state of the distal colon was altered with O. formigenes lends support to the secretagogue hypothesis and serves as a pioneering step in characterizing the biochemical interplay between O. formigenes and the mammalian host.

9.
Urolithiasis ; 48(1): 1-8, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31201468

RESUMO

Oxalobacter sp. promotion of enteric oxalate excretion, correlating with reductions in urinary oxalate excretion, was previously reported in rats and mice, but the mechanistic basis for this affect has not been described. The main objective of the present study was to determine whether the apical oxalate transport proteins, PAT1 (slc26a6) and DRA (slc26a3), are involved in mediating the Oxalobacter-induced net secretory flux across colonized mouse cecum and distal colon. We measured unidirectional and net fluxes of oxalate across tissues removed from colonized PAT1 and DRA knockout (KO) mice and also across two double knockout (dKO) mouse models with primary hyperoxaluria, type 1 (i.e., deficient in alanine-glyoxylate aminotransferase; AGT KO), including PAT1/AGT dKO and DRA/AGT dKO mice compared to non-colonized mice. In addition, urinary oxalate excretion was measured before and after the colonization procedure. The results demonstrate that Oxalobacter can induce enteric oxalate excretion in the absence of either apical oxalate transporter and urinary oxalate excretion was reduced in all colonized genotypes fed a 1.5% oxalate-supplemented diet. We conclude that there are other, as yet unidentified, oxalate transporters involved in mediating the directional changes in oxalate transport across the Oxalobacter-colonized mouse large intestine.


Assuntos
Antiporters/metabolismo , Mucosa Intestinal/metabolismo , Oxalatos/metabolismo , Oxalobacter formigenes/metabolismo , Transportadores de Sulfato/metabolismo , Animais , Antiporters/genética , Ceco/metabolismo , Ceco/microbiologia , Colo/metabolismo , Colo/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Knockout , Oxalobacter formigenes/isolamento & purificação , Eliminação Renal , Transportadores de Sulfato/genética , Simbiose
10.
PLoS One ; 14(9): e0222393, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31545840

RESUMO

Oxalate, a ubiquitous compound in many plant-based foods, is absorbed through the intestine and precipitates with calcium in the kidneys to form stones. Over 80% of diagnosed kidney stones are found to be calcium oxalate. People who form these stones often experience a high rate of recurrence and treatment options remain limited despite decades of dedicated research. Recently, the intestinal microbiome has become a new focus for novel therapies. Studies have shown that select species of Lactobacillus, the most commonly included genus in modern probiotic supplements, can degrade oxalate in vitro and even decrease urinary oxalate in animal models of Primary Hyperoxaluria. Although the purported health benefits of Lactobacillus probiotics vary significantly between species, there is supporting evidence for their potential use as probiotics for oxalate diseases. Defining the unique metabolic properties of Lactobacillus is essential to define how these bacteria interact with the host intestine and influence overall health. We addressed this need by characterizing and comparing the metabolome and lipidome of the oxalate-degrading Lactobacillus acidophilus and Lactobacillus gasseri using ultra-high-performance liquid chromatography-high resolution mass spectrometry. We report many species-specific differences in the metabolic profiles of these Lactobacillus species and discuss potential probiotic relevance and function resulting from their differential expression. Also described is our validation of the oxalate-degrading ability of Lactobacillus acidophilus and Lactobacillus gasseri, even in the presence of other preferred carbon sources, measuring in vitro 14C-oxalate consumption via liquid scintillation counting.


Assuntos
Lactobacillus acidophilus/metabolismo , Lactobacillus gasseri/metabolismo , Metabolômica , Oxalatos/metabolismo , Probióticos/metabolismo , Cromatografia Líquida de Alta Pressão , Metabolismo dos Lipídeos , Lipidômica , Espectrometria de Massas , Contagem de Cintilação
11.
Anal Bioanal Chem ; 411(19): 4807-4818, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30740635

RESUMO

Diseases of oxalate, such as nephrolithiasis and primary hyperoxaluria, affect a significant portion of the US population and have limited treatment options. Oxalobacter formigenes, an obligate oxalotrophic bacterium in the mammalian intestine, has generated great interest as a potential probiotic or therapeutic treatment for oxalate-related conditions due to its ability to degrade both exogenous (dietary) and endogenous (metabolic) oxalate, lowering the risk of hyperoxaluria/hyperoxalemia. Although all oxalotrophs degrade dietary oxalate, Oxalobacter formigenes is the only species shown to initiate intestinal oxalate secretion to draw upon endogenous, circulating oxalate for consumption. Evidence suggests that Oxalobacter regulates oxalate transport proteins in the intestinal epithelium using an unidentified secreted bioactive compound, but the mechanism of this function remains elusive. It is essential to gain an understanding of the biochemical relationship between Oxalobacter and the host intestinal epithelium for this microbe to progress as a potential remedy for oxalate diseases. This investigation includes the first profiling of the metabolome and lipidome of Oxalobacter formigenes, specifically the human strain HC1 and rat strain OxWR, the only two strains shown thus far to initiate net intestinal oxalate secretion across native gut epithelia. This study was performed using untargeted and targeted metabolomics and lipidomics methodologies utilizing ultra-high-performance liquid chromatography-mass spectrometry. We report our findings that the metabolic profiles of these strains, although largely conserved, show significant differences in their expression of many compounds. Several strain-specific features were also detected. Discussed are trends in the whole metabolic profile as well as in individual features, both identified and unidentified. Graphical abstract ᅟ.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Lipídeos/química , Espectrometria de Massas/métodos , Metabolômica , Oxalobacter formigenes/metabolismo
12.
Exp Physiol ; 104(3): 334-344, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30615234

RESUMO

NEW FINDINGS: What is the central question of this study? The tracer 36 Cl- , currently used to measure transepithelial Cl- fluxes, has become prohibitively expensive, threatening its future use. 125 Iodide, previously validated alongside 36 Cl- as a tracer of Cl- efflux by cells, has not been tested as a surrogate for 36 Cl- across epithelia. What is the main finding and its importance? We demonstrate that 125 I- can serve as an inexpensive replacement for measuring Cl- transport across mouse large intestine, tracking Cl- transport in response to cAMP stimulation (inducing Cl- secretion) in the presence and absence of the main gastrointestinal Cl- -HCO3- exchanger, DRA. ABSTRACT: Chloride transport is important for driving fluid secretion and absorption by the large intestine, with dysregulation resulting in diarrhoea-associated pathologies. The radioisotope 36 Cl- has long been used as a tracer to measure epithelial Cl- transport but is prohibitively expensive. 125 Iodide has been used as an alternative to 36 Cl- in some transport assays but has never been validated as an alternative for tracing bidirectional transepithelial Cl- fluxes. The goal of this study was to validate 125 I- as an alternative to 36 Cl- for measurement of Cl- transport by the intestine. Simultaneous fluxes of 36 Cl- and 125 I- were measured across the mouse caecum and distal colon. Net Cl- secretion was induced by the stimulation of cAMP with a cocktail of forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX). Unidirectional fluxes of 125 I- correlated well with 36 Cl- fluxes after cAMP-induced net Cl- secretion, occurring predominantly through a reduction in the absorptive mucosal-to-serosal Cl- flux rather than by stimulation of the secretory serosal-to-mucosal Cl- flux. Correlations between 125 I- fluxes and 36 Cl- fluxes were maintained in epithelia from mice lacking DRA (Slc26a3), the main Cl- -HCO3- exchanger responsible for Cl- absorption by the large intestine. Lower rates of Cl- and I- absorption in the DRA knockout intestine suggest that DRA might have a previously unrecognized role in iodide uptake. This study validates that 125 I- traces transepithelial Cl- fluxes across the mouse large intestine, provides insights into the mechanism of net Cl- secretion and suggests that DRA might be involved in intestinal iodide absorption.


Assuntos
Cloretos/metabolismo , Colo/metabolismo , Epitélio/metabolismo , Iodetos/metabolismo , Transporte de Íons/fisiologia , Animais , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transportadores de Sulfato/metabolismo
13.
Urolithiasis ; 47(3): 243-254, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29947993

RESUMO

In rats, we recently showed how a chronic metabolic acidosis simultaneously reduced urinary oxalate excretion and promoted oxalate secretion by the distal colon leading to the proposition that acid-base disturbances may trigger changes to renal and intestinal oxalate handling. The present study sought to reproduce and extend these observations using the mouse model, where the availability of targeted gene knockouts (KOs) would offer future opportunities to reveal some of the underlying transporters and mechanisms involved. Mice were provided with a sustained load of acid (NH4Cl), base (NaHCO3) or the carbonic anhydrase inhibitor acetazolamide (ATZ) for 7 days after which time the impacts on urinary oxalate excretion and its transport by the intestine were evaluated. Mice consuming NH4Cl developed a metabolic acidosis but urinary oxalate was only reduced 46% and not statistically different from the control group, while provision of NaHCO3 provoked a significant 2.6-fold increase in oxalate excretion. For mice receiving ATZ, the rate of urinary oxalate excretion did not change significantly. Critically, none of these treatments altered the fluxes of oxalate (or chloride) across the distal ileum, cecum or distal colon. Hence, we were unable to produce the same effects of a metabolic acidosis in mice that we had previously found in rats, failing to find any evidence of the 'gut-kidney axis' influencing oxalate handling in response to various acid-base challenges. Despite the potential advantages offered by KO mice, this model species is not suitable for exploring how acid-base status regulates oxalate handling between the kidney and intestine.


Assuntos
Acidose/metabolismo , Mucosa Intestinal/metabolismo , Cálculos Renais/metabolismo , Rim/metabolismo , Oxalatos/metabolismo , Acetazolamida/administração & dosagem , Acidose/induzido quimicamente , Acidose/urina , Cloreto de Amônio/toxicidade , Animais , Inibidores da Anidrase Carbônica/administração & dosagem , Anidrases Carbônicas/metabolismo , Modelos Animais de Doenças , Feminino , Homeostase/efeitos dos fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Rim/efeitos dos fármacos , Cálculos Renais/urina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxalatos/urina , Ratos , Eliminação Renal/efeitos dos fármacos , Especificidade da Espécie
14.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G82-G94, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30383413

RESUMO

The anion exchanger SAT-1 [sulfate anion transporter 1 (Slc26a1)] is considered an important regulator of oxalate and sulfate homeostasis, but the mechanistic basis of these critical roles remain undetermined. Previously, characterization of the SAT-1-knockout (KO) mouse suggested that the loss of SAT-1-mediated oxalate secretion by the intestine was responsible for the hyperoxaluria, hyperoxalemia, and calcium oxalate urolithiasis reportedly displayed by this model. To test this hypothesis, we compared the transepithelial fluxes of 14C-oxalate, 35SO42- , and 36Cl- across isolated, short-circuited segments of the distal ileum, cecum, and distal colon from wild-type (WT) and SAT-1-KO mice. The absence of SAT-1 did not impact the transport of these anions by any part of the intestine examined. Additionally, SAT-1-KO mice were neither hyperoxaluric nor hyperoxalemic. Instead, 24-h urinary oxalate excretion was almost 50% lower than in WT mice. With no contribution from the intestine, we suggest that this may reflect the loss of SAT-1-mediated oxalate efflux from the liver. SAT-1-KO mice were, however, profoundly hyposulfatemic, even though there were no changes to intestinal sulfate handling, and the renal clearances of sulfate and creatinine indicated diminished rates of sulfate reabsorption by the proximal tubule. Aside from this distinct sulfate phenotype, we were unable to reproduce the hyperoxaluria, hyperoxalemia, and urolithiasis of the original SAT-1-KO model. In conclusion, oxalate and sulfate transport by the intestine were not dependent on SAT-1, and we found no evidence supporting the long-standing hypothesis that intestinal SAT-1 contributes to oxalate and sulfate homeostasis. NEW & NOTEWORTHY SAT-1 is a membrane-bound transport protein expressed in the intestine, liver, and kidney, where it is widely considered essential for the excretion of oxalate, a potentially toxic waste metabolite. Previously, calcium oxalate kidney stone formation by the SAT-1-knockout mouse generated the hypothesis that SAT-1 has a major role in oxalate excretion via the intestine. We definitively tested this proposal and found no evidence for SAT-1 as an intestinal anion transporter contributing to oxalate homeostasis.


Assuntos
Antiporters/genética , Homeostase/fisiologia , Hiperoxalúria/metabolismo , Nefrolitíase/metabolismo , Oxalatos/metabolismo , Transportadores de Sulfato/genética , Animais , Cloretos/metabolismo , Homeostase/genética , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Transporte de Íons/fisiologia , Rim/metabolismo , Fígado/metabolismo , Camundongos Knockout , Nefrolitíase/genética , Transportadores de Sulfato/metabolismo
15.
Genome Announc ; 5(28)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28705966

RESUMO

The lack of Oxalobacter formigenes colonization in the human gut is generally acknowledged as a risk factor for kidney stone formation since this microorganism can play an important role in oxalate homeostasis. Here, we present the genome sequence of OXCC13, a human strain isolated from an individual residing in Germany.

16.
Genome Announc ; 5(27)2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684568

RESUMO

The lack of Oxalobacter formigenes colonization of the human gut has been correlated with the formation of calcium oxalate kidney stones and also with the number of recurrent kidney stone episodes. Here, we present the genome sequence of HC-1, a human strain isolated from an individual residing in Iowa, USA.

17.
Surg Obes Relat Dis ; 13(7): 1152-1157, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28552742

RESUMO

BACKGROUND: Hyperoxaluria and oxalate kidney stones frequently develop after Roux-en-Y gastric bypass (RYGB). Oxalobacter formigenes can degrade ingested oxalate. OBJECTIVES: Examine the effect of O. formigenes wild rat strain (OXWR) colonization on urinary oxalate excretion and intestinal oxalate transport in a hyperoxaluric RYGB model. SETTING: Basic Science Laboratory, United States. METHODS: At 21 weeks of age, 28 obese male Sprague-Dawley rats survived Sham (n = 10) or RYGB (n = 18) surgery and were maintained on a 1.5% potassium oxalate, 40% fat diet. At 12 weeks postoperatively, half the animals in each group were gavaged with OXWR. At 16 weeks, percent dietary fat content was lowered to 10%. Urine and stool were collected weekly to determine oxalate and colonization status, respectively. At week 20, [14 C]-oxalate fluxes and electrical parameters were measured in vitro across isolated distal colon and jejunal (Roux limb) tissue mounted in Ussing Chambers. RESULTS: RYGB animals lost 22% total weight while Shams gained 5%. On a moderate oxalate diet, urinary oxalate excretion was 4-fold higher in RYGB than Sham controls. OXWR colonization, obtained in all gavaged animals, reduced urinary oxalate excretion 74% in RYGB and 39% in Sham and was further augmented by lowering the percentage of dietary fat. Finally, OXWR colonization significantly enhanced basal net colonic oxalate secretion in both groups. CONCLUSIONS: In our model, OXWR lowered urinary oxalate by luminal oxalate degradation in concert with promotion of enteric oxalate elimination. Trials of O. formigenes colonization and low-fat diet are warranted in calcium oxalate stone formers with gastric bypass and resistant hyperoxaluria.


Assuntos
Derivação Gástrica , Hiperoxalúria/microbiologia , Obesidade Mórbida/cirurgia , Oxalatos/urina , Oxalobacter formigenes/fisiologia , Animais , Creatinina/urina , Modelos Animais de Doenças , Ingestão de Alimentos , Fezes/microbiologia , Masculino , Distribuição Aleatória , Ratos Sprague-Dawley , Redução de Peso/fisiologia
18.
Am J Physiol Gastrointest Liver Physiol ; 313(3): G166-G179, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526688

RESUMO

The ileum is considered the primary site of inorganic sulfate ([Formula: see text]) absorption. In the present study, we explored the contributions of the apical chloride/bicarbonate (Cl-/[Formula: see text]) exchangers downregulated in adenoma (DRA; Slc26a3), and putative anion transporter 1 (PAT1; Slc26a6), to the underlying transport mechanism. Transepithelial 35[Formula: see text] and 36Cl- fluxes were determined across isolated, short-circuited segments of the distal ileum from wild-type (WT), DRA-knockout (KO), and PAT1-KO mice, together with measurements of urine and plasma sulfate. The WT distal ileum supported net sulfate absorption [197.37 ± 13.61 (SE) nmol·cm-2·h-1], but neither DRA nor PAT1 directly contributed to the unidirectional mucosal-to-serosal flux ([Formula: see text]), which was sensitive to serosal (but not mucosal) DIDS, dependent on Cl-, and regulated by cAMP. However, the absence of DRA significantly enhanced net sulfate absorption by one-third via a simultaneous rise in [Formula: see text] and a 30% reduction to the secretory serosal-to-mucosal flux ([Formula: see text]). We propose that DRA, together with PAT1, contributes to [Formula: see text] by mediating sulfate efflux across the apical membrane. Associated with increased ileal sulfate absorption in vitro, plasma sulfate was 61% greater, and urinary sulfate excretion (USO4) 2.2-fold higher, in DRA-KO mice compared with WT controls, whereas USO4 was increased 1.8-fold in PAT1-KO mice. These alterations to sulfate homeostasis could not be accounted for by any changes to renal sulfate handling suggesting that the source of this additional sulfate was intestinal. In summary, we characterized transepithelial sulfate fluxes across the mouse distal ileum demonstrating that DRA (and to a lesser extent, PAT1) secretes sulfate with significant implications for intestinal sulfate absorption and overall homeostasis.NEW & NOTEWORTHY Sulfate is an essential anion that is actively absorbed from the small intestine involving members of the Slc26 gene family. Here, we show that the main intestinal chloride transporter Slc26a3, known as downregulated in adenoma (DRA), also handles sulfate and contributes to its secretion into the lumen. In the absence of functional DRA (as in the disease congenital chloride diarrhea), net intestinal sulfate absorption was significantly enhanced resulting in substantial alterations to overall sulfate homeostasis.


Assuntos
Antiporters/metabolismo , Homeostase/fisiologia , Íleo/fisiologia , Sulfatos/metabolismo , Animais , Antiporters/genética , Bicarbonatos/metabolismo , Transporte Biológico , Cloretos/metabolismo , Condutividade Elétrica , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Transportadores de Sulfato
19.
Ann Transl Med ; 5(2): 36, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28217701

RESUMO

This perspective focuses on how the gut microbiota can impact urinary oxalate excretion in the context of hyperoxaluria, a major risk factor in kidney stone disease. In the genetic disease of Primary Hyperoxaluria Type 1 (PH1), an increased endogenous production of oxalate, due to a deficiency of the liver enzyme alanine-glyoxylate aminotransferase (AGT), results in hyperoxaluria and oxalate kidney stones. The constant elevation in urinary oxalate in PH1 patients ultimately leads to tissue deposition of oxalate, renal failure and death and the only known cure for PH1 is a liver or liver-kidney transplant. The potential impact of a probiotic/therapeutic approach may be clinically significant in PH1 and could also extend to a much larger population of idiopathic oxalate stone formers who comprise ~12% of Americans, individuals with enteric hyperoxaluria, and an emerging population of hyperoxaluric patients who have undergone bariatric surgery and develop kidney stone disease as a consequence.

20.
Urolithiasis ; 45(1): 89-108, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27913853

RESUMO

The intestine exerts a considerable influence over urinary oxalate in two ways, through the absorption of dietary oxalate and by serving as an adaptive extra-renal pathway for elimination of this waste metabolite. Knowledge of the mechanisms responsible for oxalate absorption and secretion by the intestine therefore have significant implications for understanding the etiology of hyperoxaluria, as well as offering potential targets for future treatment strategies for calcium oxalate kidney stone disease. In this review, we present the recent developments and advances in this area over the past 10 years, and put to the test some of the new ideas that have emerged during this time, using human and mouse models. A key focus for our discussion are the membrane-bound anion exchangers, belonging to the SLC26 gene family, some of which have been shown to participate in transcellular oxalate absorption and secretion. This has offered the opportunity to not only examine the roles of these specific transporters, revealing their importance to oxalate homeostasis, but to also probe the relative contributions made by the active transcellular and passive paracellular components of oxalate transport across the intestine. We also discuss some of the various physiological stimuli and signaling pathways which have been suggested to participate in the adaptation and regulation of intestinal oxalate transport. Finally, we offer an update on research into Oxalobacter formigenes, alongside recent investigations of other oxalate-degrading gut bacteria, in both laboratory animals and humans.


Assuntos
Hiperoxalúria/metabolismo , Mucosa Intestinal/metabolismo , Cálculos Renais/etiologia , Oxalatos/metabolismo , Animais , Transporte Biológico , Humanos , Absorção Intestinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA