Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiology (Bethesda) ; 37(1): 46-52, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486395

RESUMO

The hypoxia-hypoxia-inducible factor (HIF)-1α-A2-adenosinergic pathway protects tissues from inflammatory damage during antipathogen immune responses. The elimination of this physiological tissue-protecting mechanism by supplemental oxygenation may contribute to the high mortality of oxygen-ventilated COVID-19 patients by exacerbating inflammatory lung damage. Restoration of this pathway with hypoxia-adenosinergic drugs may improve outcomes in these patients.


Assuntos
COVID-19 , Neoplasias , Humanos , Hipóxia , Receptor A2A de Adenosina , SARS-CoV-2
2.
Adv Funct Mater ; 31(37)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37745940

RESUMO

Solid tumors are protected from antitumor immune responses due to their hypoxic microenvironments. Weakening hypoxia-driven immunosuppression by hyperoxic breathing of 60% oxygen has shown to be effective in unleashing antitumor immune cells against solid tumors. However, efficacy of systemic oxygenation is limited against solid tumors outside of lungs and has been associated with unwanted side effects. As a result, it is essential to develop targeted oxygenation alternatives to weaken tumor hypoxia as novel approaches to restore immune responses against cancer. Herein, we report on injectable oxygen-generating cryogels (O2-cryogels) to reverse tumor-induced hypoxia. These macroporous biomaterials were designed to locally deliver oxygen, inhibit the expression of hypoxia-inducible genes in hypoxic melanoma cells, and reduce the accumulation of immunosuppressive extracellular adenosine. Our data show that O2-cryogels enhance T cell-mediated secretion of cytotoxic proteins, restoring the killing ability of tumor-specific CTLs, both in vitro and in vivo. In summary, O2-cryogels provide a unique and safe platform to supply oxygen as a co-adjuvant in hypoxic tumors and have the potential to improve cancer immunotherapies.

4.
Front Immunol ; 11: 570041, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117358

RESUMO

The blockade of immunological negative regulators offered a novel therapeutic approach that revolutionized the immunotherapy of cancer. Still, a significant portion of patients fail to respond to anti-PD-1/PD-L1 and/or anti-CTLA-4 therapy or experience significant adverse effects. We propose that one of the major reasons that many patients do not respond to this form of therapy is due to the powerful physiological suppression mediated by hypoxia-adenosinergic signaling. Indeed, both inflamed and cancerous tissues are hypoxic and rich in extracellular adenosine, in part due to stabilization of the transcription factor hypoxia-inducible factor 1 alpha (HIF-1α). Adenosine signals through adenosine A2A receptors (A2AR) to suppress anti-tumor and anti-pathogen immune responses. Several classes of anti-hypoxia-A2AR therapeutics have been offered to refractory cancer patients, with A2AR blockers, inhibitors of adenosine-generating enzymes such as CD39 and CD73, and hypoxia-targeting drugs now reaching the clinical stage. Clinical results have confirmed preclinical observations that blockade of the hypoxia-adenosine-A2AR axis synergizes with inhibitors of immune checkpoints to induce tumor rejection. Thus, A2AR blockers provide a new hope for the majority of patients who are nonresponsive to current immunotherapeutic approaches including checkpoint blockade. Here, we discuss the discoveries that firmly implicate the A2AR as a critical and non-redundant biochemical negative regulator of the immune response and highlight the importance of targeting the hypoxia-adenosine-A2AR axis to manipulate anti-pathogen and anti-tumor immune responses.


Assuntos
Hipóxia/metabolismo , Terapia de Imunossupressão , Imunoterapia , Neoplasias/terapia , Receptor A2A de Adenosina/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adenosina/metabolismo , Animais , Biomarcadores , Humanos , Terapia de Imunossupressão/métodos , Terapia de Alvo Molecular , Neoplasias/etiologia , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Resultado do Tratamento
5.
J Clin Invest ; 130(11): 5629-5637, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32870821

RESUMO

Hypoxia/HIF-1α- and extracellular adenosine/A2 adenosine receptor-mediated immunosuppression protects tissues from collateral damage by antipathogen immune cells. However, this mechanism also protects cancerous tissues by inhibiting antitumor immune cells in hypoxic and extracellular adenosine-rich tumors that are the most resistant to current therapies. Here, we explain a potentially novel, antiimmunosuppressive reasoning to justify strategies using respiratory hyperoxia and oxygenation agents in cancer treatment. Earlier attempts to use oxygenation of tumors as a monotherapy or to improve radiotherapy have failed because oxygenation protocols were not combined with immunotherapies of cancer. In contrast, the proposal for therapeutic use of antihypoxic oxygenation described here was motivated by the need to prevent the hypoxia/HIF-1α-driven accumulation of extracellular adenosine to (a) unleash antitumor immune cells from inhibition by intracellular cAMP and (b) prevent immunosuppressive transcription of cAMP response element- and hypoxia response element-containing immunosuppressive gene products (e.g., TGF-ß). Use of oxygenation agents together with inhibitors of the A2A adenosine receptor may be required to enable the most effective cancer immunotherapy. The emerging outcomes of clinical trials of cancer patients refractory to all other treatments provide support for the molecular and immunological mechanism-based approach to cancer immunotherapy described here.


Assuntos
Antineoplásicos/uso terapêutico , Hiperóxia , Imunoterapia , Neoplasias , Oxigênio/uso terapêutico , Animais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia
6.
Curr Opin Pharmacol ; 53: 84-90, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32841869

RESUMO

The promising results of the first in-human clinical study using A2AR antagonists for treatment of renal cell carcinoma highlight two decades of research into the hypoxia-A2-adenosinergic pathway. Importantly, clinical responses have been observed in patients who previously progressed on anti-PD-1/PDL-1 therapy, emphasizing the clinical importance of targeting A2AR signaling in cancer immunotherapies. Recently, it has been shown that systemic oxygenation weakens all known stages of the hypoxia-A2-adenosinergic axis. Therefore, we advocate the clinical use of systemic oxygenation and oxygenation agents in combination with A2AR blockade to further improve cancer immunotherapies. This approach is expected to completely eliminate the upstream (hypoxia-HIF-1α) and downstream (adenosine-A2AR) stages of the immunosuppressive hypoxia-adenosinergic signaling axis. This might be a necessary strategy to maximize the therapeutic benefits of A2AR antagonists and increase susceptibility of tumors to cancer treatments.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Imunoterapia , Neoplasias/terapia , Oxigênio/uso terapêutico , Receptor A2A de Adenosina/imunologia , Hipóxia Tumoral , 5'-Nucleotidase/imunologia , Adenosina/imunologia , Animais , Antígenos CD/imunologia , Apirase/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Tolerância Imunológica , Neoplasias/imunologia
7.
PLoS One ; 12(11): e0187314, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29155844

RESUMO

Human cancers are known to downregulate Major Histocompatibility Complex (MHC) class I expression thereby escaping recognition and rejection by anti-tumor T cells. Here we report that oxygen tension in the tumor microenvironment (TME) serves as an extrinsic cue that regulates antigen presentation by MHC class I molecules. In support of this view, hypoxia is shown to negatively regulate MHC expression in a HIF-dependent manner as evidenced by (i) lower MHC expression in the hypoxic TME in vivo and in hypoxic 3-dimensional (3D) but not 2-dimensional (2D) tumor cell cultures in vitro; (ii) decreased MHC in human renal cell carcinomas with constitutive expression of HIF due to genetic loss of von Hippel-Lindau (VHL) function as compared with isogenically paired cells with restored VHL function, and iii) increased MHC in tumor cells with siRNA-mediated knockdown of HIF. In addition, hypoxia downregulated antigen presenting proteins like TAP 1/2 and LMP7 that are known to have a dominant role in surface display of peptide-MHC complexes. Corroborating oxygen-dependent regulation of MHC antigen presentation, hyperoxia (60% oxygen) transcriptionally upregulated MHC expression and increased levels of TAP2, LMP2 and 7. In conclusion, this study reveals a novel mechanism by which intra-tumoral hypoxia and HIF can potentiate immune escape. It also suggests the use of hyperoxia to improve tumor cell-based cancer vaccines and for mining novel immune epitopes. Furthermore, this study highlights the advantage of 3D cell cultures in reproducing hypoxia-dependent changes observed in the TME.


Assuntos
Hipóxia Celular/imunologia , Genes MHC Classe I/imunologia , Fator 1 Induzível por Hipóxia/genética , Neoplasias Renais/imunologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 1 Induzível por Hipóxia/imunologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Oxigênio/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Linfócitos T/imunologia , Ativação Transcricional/genética , Ativação Transcricional/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/imunologia
8.
Curr Opin Pharmacol ; 29: 90-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27429212

RESUMO

Hypoxic and adenosine rich tumor microenvironments represent an important barrier that must be overcome to enable T and NK cells to reject tumors. The A2A adenosine receptor (A2AR) on activated immune cells was identified as a critical and non-redundant mediator of physiological immunosuppression. Observations showing that tumor-protecting A2AR also suppress and redirect the anti-tumor immune response pointed to the importance of inhibiting this pathway to improve cancer immunotherapy. We advocated (i) blocking immunosuppressive adenosine-A2AR-cAMP-mediated intracellular signaling by A2AR antagonists and (ii) weakening hypoxia-HIF-1α-mediated accumulation of extracellular adenosine by oxygenation agents that also inhibits CD39/CD73 adenosine-generating enzymes. In view of commencing clinical trials of synthetic A2AR antagonists in combination with cancer immunotherapies, we discuss their promise and exclusion criteria.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Adenosina/metabolismo , Animais , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Tolerância Imunológica/imunologia , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
9.
Oncoimmunology ; 4(12): e1052934, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26587328

RESUMO

Oxygenation of tumors weakens the tumor-protecting immunosuppressive signaling by A2A adenosine receptors in hypoxic and extracellular adenosine-rich microenvironments. This, in turn, unleashes the otherwise inhibited tumor-reactive T and natural killer (NK) cells. Oxygenation of tumors thus emerges as a novel checkpoint inhibitor of potential therapeutic value, but only in combination with cancer immunotherapies.

10.
Sci Transl Med ; 7(277): 277ra30, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25739764

RESUMO

Antitumor T cells either avoid or are inhibited in hypoxic and extracellular adenosine-rich tumor microenvironments (TMEs) by A2A adenosine receptors. This may limit further advances in cancer immunotherapy. There is a need for readily available and safe treatments that weaken the hypoxia-A2-adenosinergic immunosuppression in the TME. Recently, we reported that respiratory hyperoxia decreases intratumoral hypoxia and concentrations of extracellular adenosine. We show that it also reverses the hypoxia-adenosinergic immunosuppression in the TME. This, in turn, stimulates (i) enhanced intratumoral infiltration and reduced inhibition of endogenously developed or adoptively transfered tumor-reactive CD8 T cells, (ii) increased proinflammatory cytokines and decreased immunosuppressive molecules, such as transforming growth factor-ß (TGF-ß), (iii) weakened immunosuppression by regulatory T cells, and (iv) improved lung tumor regression and long-term survival in mice. Respiratory hyperoxia also promoted the regression of spontaneous metastasis from orthotopically grown breast tumors. These effects are entirely T cell- and natural killer cell-dependent, thereby justifying the testing of supplemental oxygen as an immunological coadjuvant to combine with existing immunotherapies for cancer.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Oxigênio/uso terapêutico , Adenosina/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Hiperóxia/complicações , Hiperóxia/patologia , Hipóxia/complicações , Hipóxia/imunologia , Hipóxia/patologia , Terapia de Imunossupressão , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neoplasias/patologia , Oxigênio/farmacologia , Indução de Remissão , Respiração/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/efeitos dos fármacos
11.
J Mol Med (Berl) ; 92(12): 1283-92, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25120128

RESUMO

UNLABELLED: Intratumoral hypoxia and hypoxia inducible factor-1α (HIF-1-α)-dependent CD39/CD73 ectoenzymes may govern the accumulation of tumor-protecting extracellular adenosine and signaling through A2A adenosine receptors (A2AR) in tumor microenvironments (TME). Here, we explored the conceptually novel motivation to use supplemental oxygen as a treatment to inhibit the hypoxia/HIF-1α-CD39/CD73-driven accumulation of extracellular adenosine in the TME in order to weaken the tumor protection. We report that hyperoxic breathing (60 % O2) decreased the TME hypoxia, as well as levels of HIF-1α and downstream target proteins of HIF-1α in the TME according to proteomic studies in mice. Importantly, oxygenation also downregulated the expression of adenosine-generating ectoenzymes and significantly lowered levels of tumor-protecting extracellular adenosine in the TME. Using supplemental oxygen as a tool in studies of the TME, we also identified FHL-1 as a potentially useful marker for the conversion of hypoxic into normoxic TME. Hyperoxic breathing resulted in the upregulation of antigen-presenting MHC class I molecules on tumor cells and in the better recognition and increased susceptibility to killing by tumor-reactive cytotoxic T cells. Therapeutic breathing of 60 % oxygen resulted in the significant inhibition of growth of established B16.F10 melanoma tumors and prolonged survival of mice. Taken together, the data presented here provide proof-of principle for the therapeutic potential of systemic oxygenation to convert the hypoxic, adenosine-rich and tumor-protecting TME into a normoxic and extracellular adenosine-poor TME that, in turn, may facilitate tumor regression. We propose to explore the combination of supplemental oxygen with existing immunotherapies of cancer. KEY MESSAGES: Oxygenation decreases levels of tumor protecting hypoxia. Oxygenation decreases levels of tumor protecting extracellular adenosine. Oxygenation decreases expression of HIF-1alpha dependent tumor-protecting proteins. Oxygenation increases MHC class I expression and enables tumor regression.


Assuntos
Adenosina/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/complicações , Hipóxia/terapia , Neoplasias/complicações , Neoplasias/terapia , Oxigênio/uso terapêutico , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Feminino , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA