Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cells ; 12(3)2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36766787

RESUMO

The oral cavity is a unique environment that consists of teeth surrounded by periodontal tissues, oral mucosae with minor salivary glands, and terminal parts of major salivary glands that open into the oral cavity. The cavity is constantly exposed to viral and microbial pathogens. Recent studies indicate that components of the plasminogen (Plg)/plasmin (Pm) system are expressed in tissues of the oral cavity, such as the salivary gland, and contribute to microbial infection and inflammation, such as periodontitis. The Plg/Pm system fulfills two major functions: (a) the destruction of fibrin deposits in the bloodstream or damaged tissues, a process called fibrinolysis, and (b) non-fibrinolytic actions that include the proteolytic modulation of proteins. One can observe both functions during inflammation. The virus that causes the coronavirus disease 2019 (COVID-19) exploits the fibrinolytic and non-fibrinolytic functions of the Plg/Pm system in the oral cavity. During COVID-19, well-established coagulopathy with the development of microthrombi requires constant activation of the fibrinolytic function. Furthermore, viral entry is modulated by receptors such as TMPRSS2, which is necessary in the oral cavity, leading to a derailed immune response that peaks in cytokine storm syndrome. This paper outlines the significance of the Plg/Pm system for infectious and inflammatory diseases that start in the oral cavity.


Assuntos
COVID-19 , Plasminogênio , Humanos , Fibrinolisina/metabolismo , Inflamação , Boca , Plasminogênio/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo
3.
Front Immunol ; 14: 1299792, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38313435

RESUMO

Patients with coronavirus disease-2019 (COVID-19) have an increased risk of thrombosis and acute respiratory distress syndrome (ARDS). Thrombosis is often attributed to increases in plasminogen activator inhibitor-1 (PAI-1) and a shut-down of fibrinolysis (blood clot dissolution). Decreased urokinase-type plasminogen activator (uPA), a protease necessary for cell-associated plasmin generation, and increased tissue-type plasminogen activator (tPA) and PAI-1 levels have been reported in COVID-19 patients. Because these factors can occur in free and complexed forms with differences in their biological functions, we examined the predictive impact of uPA, tPA, and PAI-1 in their free forms and complexes as a biomarker for COVID-19 severity and the development of ARDS. In this retrospective study of 69 Japanese adults hospitalized with COVID-19 and 20 healthy donors, we found elevated free, non-complexed PAI-1 antigen, low circulating uPA, and uPA/PAI-1 but not tPA/PAI-1 complex levels to be associated with COVID-19 severity and ARDS development. This biomarker profile was typical for patients in the complicated phase. Lack of PAI-1 activity in circulation despite free, non-complexed PAI-1 protein and plasmin/α2anti-plasmin complex correlated with suPAR and sVCAM levels, markers indicating endothelial dysfunction. Furthermore, uPA/PAI-1 complex levels positively correlated with TNFα, a cytokine reported to trigger inflammatory cell death and tissue damage. Those levels also positively correlated with lymphopenia and the pro-inflammatory factors interleukin1ß (IL1ß), IL6, and C-reactive protein, markers associated with the anti-viral inflammatory response. These findings argue for using uPA and uPA/PAI-1 as novel biomarkers to detect patients at risk of developing severe COVID-19, including ARDS.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Trombose , Adulto , Humanos , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Inibidor 1 de Ativador de Plasminogênio , Estudos Retrospectivos , Fibrinolisina , Biomarcadores
4.
Int J Dev Biol ; 67(4): 147-153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38334180

RESUMO

Cancer cells and embryonic stem (ES) cells share several biological properties, suggesting that some genes expressed in ES cells may play an important role in cancer cell growth. In this study, we investigated the possible role of zinc finger protein 296 (ZFP296), a transcription factor expressed in ES cells, in cancer development. First, we found that overexpression of Zfp296 in NIH3T3 mouse fibroblasts induced two phenomena indicative of cell transformation: enhanced proliferation under low-serum conditions and anchorage-independent growth. We also found that Zfp296 expression was upregulated in the tumor area of a mouse model of colon carcinogenesis. In addition, the expression levels of ZFP296 in various human cell lines were generally low in normal cells and relatively high in cancer cells. Finally, using a soft agar assay, we found that overexpression of ZFP296 promoted the anchorage-independent growth of cancer cells, while its knockdown had the opposite effect. Overall, these results suggest a possible role of the ES-specific transcription factor ZFP296 in cancer.


Assuntos
Proteínas de Ligação a DNA , Neoplasias , Fator de Células-Tronco , Camundongos , Animais , Humanos , Células NIH 3T3 , Fator de Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transformação Celular Neoplásica/genética , Células-Tronco Embrionárias/metabolismo , Neoplasias/metabolismo
5.
Biomedicines ; 10(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36289811

RESUMO

Although there is strong evidence that SARS-CoV-2 infection is associated with adverse outcomes in certain ethnic groups, the association of disease severity and risk factors such as comorbidities and biomarkers with racial disparities remains undefined. This retrospective study between March 2020 and February 2021 explores COVID-19 risk factors as predictors for patients' disease progression through country comparison. Disease severity predictors in Germany and Japan were cardiovascular-associated comorbidities, dementia, and age. We adjusted age, sex, body mass index, and history of cardiovascular disease comorbidity in the country cohorts using a propensity score matching (PSM) technique to reduce the influence of differences in sample size and the surprisingly young, lean Japanese cohort. Analysis of the 170 PSM pairs confirmed that 65.29% of German and 85.29% of Japanese patients were in the uncomplicated phase. More German than Japanese patients were admitted in the complicated and critical phase. Ethnic differences were identified in patients without cardiovascular comorbidities. Japanese patients in the uncomplicated phase presented a suppressed inflammatory response and coagulopathy with hypocoagulation. In contrast, German patients exhibited a hyperactive inflammatory response and coagulopathy with hypercoagulation. These differences were less pronounced in patients in the complicated phase or with cardiovascular diseases. Coagulation/fibrinolysis-associated biomarkers rather than inflammatory-related biomarkers predicted disease severity in patients with cardiovascular comorbidities: platelet counts were associated with severe illness in German patients. In contrast, high D-dimer and fibrinogen levels predicted disease severity in Japanese patients. Our comparative study indicates that ethnicity influences COVID-19-associated biomarker expression linked to the inflammatory and coagulation (thrombo-inflammatory) response. Future studies will be necessary to determine whether these differences contributed to the less severe disease progression observed in Japanese COVID-19 patients compared with those in Germany.

6.
EJHaem ; 3(3): 849-861, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36051085

RESUMO

Acute graft-versus-host disease (aGvHD) remains a major threat to a successful outcome after allogeneic hematopoietic stem cell transplantation (HSCT). Although antibody-based targeting of the CD40/CD40 ligand costimulatory pathway can prevent aGvHD, side effects hampered their clinical application, prompting a need for other ways to interfere with this important dendritic T-cell costimulatory pathway. Here, we used small interfering RNA (siRNA) complexed with ß-glucan allowing the binding and uptake of the siRNA/ß-glucan complex (siCD40/schizophyllan [SPG]; chemical modifications called NJA-312, NJA-302, and NJA-515) into Dectin1+ cells, which recognize this pathogen-associated molecular pattern receptor. aGvHD was induced by the transplantation of splenocytes and bone marrow cells from C57BL/6J into CBF1 mice. Splenic dendritic cells retained Dectin1 expression after HSCT but showed lower expression after irradiation. The administration of siCD40/SPG, NJA-312, and NJA-302 ameliorated aGvHD-mediated lethality and tissue damage of spleen and liver, but not skin. Multiple NJA-312high injections prevented aGvHD but resulted in early weight loss in allogeneic HSCT mice. In addition, NJA-312 treatment caused delayed initial donor T and B-cell recovery but resulted in stable chimerism in surviving mice. Mechanistically, NJA-312 reduced organ damage by suppressing CCR2+, F4/80+, and IL17A-expressing cell accumulation in spleen, liver, and thymus but not the skin of mice with aGvHD. Our work demonstrates that siRNA targeting of CD40 delivered via the PAMP-recognizing lectin Dectin1 changes the immunological niche, suppresses organ-specific murine aGvHD, and induces immune tolerance after organ transplantation. Our work charts future directions for therapeutic interventions to modulate tissue-specific immune reactions using Pathogen-associated molecular pattern (PAMP) molecules like 1,3-ß-glucan for cell delivery of siRNA.

7.
Rinsho Ketsueki ; 63(5): 403-409, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35662163

RESUMO

The mortality rate due to coronavirus disease 2019 (COVID-19) reached 5.3 million. However, identifying the novel treatment targets that ultimately reduce or prevent disease aggravation will be possible by understanding the mechanism and pathophysiology underlying the COVID-19 aggravation. Authors of previous studies have identified the "cytokine storm" that constitutes the secretion of inflammatory cytokines driven by the coagulation/fibrinolytic system as an inflammatory cytodynamic control mechanism that contributes to the aggravated COVID-19 pathology and the pathophysiology of related diseases. Vasculature-lining endothelial cells are bioreactors that produce or contribute to the modulation status of cytokines and coagulation and fibrinolytic system factors. The key steps in the pathophysiology of organ damage include the destabilization of the angiocrine system triggered by vascular endothelial damage during severe COVID-19. Overproduced or imbalanced angiocrine factors and inflammatory cytokines contribute to major COVID-19 complications. Within its scope, this study outlines the significance of the fibrinolytic system in the pathophysiology of inflammatory diseases, focusing on the research results. The possibility of molecular that target these angiocrine and fibrinolytic factors for inflammatory diseases as novel treatment approaches for inflammatory diseases, such as COVID-19, was discussed.


Assuntos
Tratamento Farmacológico da COVID-19 , Síndrome da Liberação de Citocina , Síndrome da Liberação de Citocina/tratamento farmacológico , Citocinas , Células Endoteliais , Humanos , SARS-CoV-2
8.
Cancers (Basel) ; 15(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36612285

RESUMO

The multifunctional endocytic receptor low-density lipoprotein receptor-related protein 1 (LRP1) has been implicated in melanoma growth. However, the mechanism of LRP1 expression in melanoma cells remains only partially understood. In most melanomas, the TP53 tumor suppressor is retained as a non-mutated, inactive form that fails to suppress tumors. We identify TP53 as a regulator of LRP1-mediated tumor growth. TP53 enhances the expression of miRNA miR-103/107. These miRNAs target LRP1 expression on melanoma cells. TP53 overexpression in human and murine melanoma cells was achieved using lentivirus or treatment with the small molecule YO-2, a plasmin inhibitor known to induce apoptosis in various cancer cell lines. TP53 restoration enhanced the expression of the tumor suppressor miR-103/107, resulting in the downregulation of LRP1 and suppression of tumor growth in vivo and in vitro. Furthermore, LRP1 overexpression or p53 downregulation prevented YO-2-mediated melanoma growth inhibition. We identified YO-2 as a novel p53 inducer in melanoma cells. Cotreatment of YO-2 with doxorubicin blocked tumor growth in vivo and in a murine melanoma model, suggesting that YO-2 exerts anti-melanoma effects alone or in combination with conventional myelosuppressive drugs.

9.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360915

RESUMO

Patients diagnosed with melanoma have a poor prognosis due to regional invasion and metastases. The receptor tyrosine kinase epidermal growth factor receptor (EGFR) is found in a subtype of melanoma with a poor prognosis and contributes to drug resistance. Aloysia citrodora essential oil (ALOC-EO) possesses an antitumor effect. Understanding signaling pathways that contribute to the antitumor of ALOC-EO is important to identify novel tumor types that can be targeted by ALOC-EO. Here, we investigated the effects of ALOC-EO on melanoma growth and tumor cell migration. ALOC-EO blocked melanoma growth in vitro and impaired primary tumor cell growth in vivo. Mechanistically, ALOC-EO blocked heparin-binding-epidermal growth factor (HB-EGF)-induced EGFR signaling and suppressed ERK1/2 phosphorylation. Myelosuppressive drugs upregulated HB-EGF and EGFR expression in melanoma cells. Cotreatment of myelosuppressive drugs with ALOC-EO improved the antitumor activity and inhibited the expression of matrix metalloproteinase-7 and -9 and a disintegrin and metalloproteinase domain-containing protein9. In summary, our study demonstrates that ALOC-EO blocks EGFR and ERK1/2 signaling, with preclinical efficacy as a monotherapy or in combination with myelosuppressive drugs in melanoma.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/metabolismo , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Neoplasias Cutâneas/metabolismo , Verbenaceae/química , Animais , Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Humanos , Melanoma/patologia , Camundongos , Fosforilação/efeitos dos fármacos , Neoplasias Cutâneas/patologia
10.
Cancers (Basel) ; 13(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804387

RESUMO

Invasion of cancer cells into surrounding tissue and the vasculature is an important step for tumor progression and the establishment of distant metastasis. The extracellular matrix (ECM) is home to many biomolecules that support new vessel formation and cancer growth. Endothelial cells release growth factors such as epidermal growth factor-like protein-7 (EGFL7), which contributes to the formation of the tumor vasculature. The signaling axis formed by EGFL7 and one of its receptors, beta 3 integrin, has emerged as a key mediator in the regulation of tumor metastasis and drug resistance. Here we summarize recent studies on the role of the ECM-linked angiocrine factor EGFL7 in primary tumor growth, neoangiogenesis, tumor metastasis by enhancing epithelial-mesenchymal transition, alterations in ECM rigidity, and drug resistance. We discuss its role in cellular adhesion and migration, vascular leakiness, and the anti-cancer response and provide background on its transcriptional regulation. Finally, we discuss its potential as a drug target as an anti-cancer strategy.

11.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669052

RESUMO

Fibrinolytic factors like plasminogen, tissue-type plasminogen activator (tPA), and urokinase plasminogen activator (uPA) dissolve clots. Though mere extracellular-matrix-degrading enzymes, fibrinolytic factors interfere with many processes during primary cancer growth and metastasis. Their many receptors give them access to cellular functions that tumor cells have widely exploited to promote tumor cell survival, growth, and metastatic abilities. They give cancer cells tools to ensure their own survival by interfering with the signaling pathways involved in senescence, anoikis, and autophagy. They can also directly promote primary tumor growth and metastasis, and endow tumor cells with mechanisms to evade myelosuppression, thus acquiring drug resistance. In this review, recent studies on the role fibrinolytic factors play in metastasis and controlling cell-death-associated processes are presented, along with studies that describe how cancer cells have exploited plasminogen receptors to escape myelosuppression.


Assuntos
Anoikis/genética , Autofagia , Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Neoplasias/metabolismo , Inativadores de Plasminogênio/metabolismo , Plasminogênio/metabolismo , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/metabolismo , Matriz Extracelular/metabolismo , Humanos , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Plasminogênio/antagonistas & inibidores , Inativadores de Plasminogênio/genética , Transdução de Sinais/genética
12.
Cell Signal ; 75: 109761, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32861744

RESUMO

A fine-tuned activation and deactivation of proteases and their inhibitors are involved in the execution of the inflammatory response. The zymogen/proenzyme plasminogen is converted to the serine protease plasmin, a key fibrinolytic factor by plasminogen activators including tissue-type plasminogen activator (tPA). Plasmin is part of an intricate protease network controlling proteins of initial hemostasis/coagulation, fibrinolytic and complement system. Activation of these protease cascades is required to mount a proper inflammatory response. Although best known for its ability to dissolve clots and cleave fibrin, recent studies point to the importance of fibrin-independent functions of plasmin during acute inflammation and inflammation resolution. In this review, we provide an up-to-date overview of the current knowledge of the enzymatic and cytokine-like effects of tPA and describe the role of tPA and plasminogen receptors in the regulation of the inflammatory response with emphasis on the cytokine storm syndrome such as observed during coronavirus disease 2019 or macrophage activation syndrome. We discuss tPA as a modulator of Toll like receptor signaling, plasmin as an activator of NFkB signaling, and summarize recent studies on the role of plasminogen receptors as controllers of the macrophage conversion into the M2 type and as mediators of efferocytosis during inflammation resolution.


Assuntos
Inflamação/imunologia , Plasminogênio/imunologia , Animais , Coagulação Sanguínea , COVID-19 , Ativação do Complemento , Infecções por Coronavirus/sangue , Infecções por Coronavirus/complicações , Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/complicações , Síndrome da Liberação de Citocina/imunologia , Citocinas/imunologia , Humanos , Sistema Imunitário/imunologia , Inflamação/sangue , Inflamação/complicações , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , NF-kappa B/imunologia , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/complicações , Pneumonia Viral/imunologia , Ativador de Plasminogênio Tecidual/imunologia
13.
Int J Cardiol Heart Vasc ; 28: 100529, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32577494

RESUMO

BACKGROUND: Atherosclerosis is a chronic inflammatory disease responsible for most cases of heart disease and stroke in Western countries. The cytotoxic drug cyclophosphamide (CPA) can modulate immune functions, and it has therefore been used to treat patients with autoimmune diseases. Extension of survival of patients with severe atherosclerosis has been reported after CPA treatment, but the underlying mechanism is still poorly understood. METHODS AND RESULTS: We have investigated the effects of CPA in a murine model of atherosclerosis. Continuous oral administration of low-dose CPA (20 mg/kg/day) prevented atherosclerosis in apolipoprotein E-deficient (apoE-/-) mice fed with a high fat diet. After 12 weeks, CPA treatment delayed progression of atherosclerosis in the mice (9.92% vs 3.32%, P < 0.05, n = 7) and reduced the macrophage content of plaques (1.228 vs 0.2975 mm2, P < 0.001). Flow cytometry (FACS) showed that, in peripheral blood and spleen cells, the numbers of B cells and inflammatory T cells (Th1 cells) decreased, and inflammatory monocytes also decreased. However, there were no differences in the bone marrow cells between the two groups. The mRNA levels in the aorta showed significantly decreased inflammatory cytokine (interleukin-6) (P < 0.05), and tended to increase anti-inflammatory cytokine (argininase-1), but no significant differences between the two groups. High dose CPA has cardiotoxicity, but the dose used in this study did not show significant cardiotoxicity. CONCLUSIONS: The results demonstrate that oral treatment with CPA inhibits initiation and progression of atherosclerosis in the apoE-/- mouse model through immunomodulatory effects on lymphoid and inflammatory cells.

14.
Blood Adv ; 4(6): 1021-1037, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32191808

RESUMO

Angiogenic factors play a key role in multiple myeloma (MM) growth, relapse, and drug resistance. Here we show that malignant plasma cells (cell lines and patient-derived MM cells) express angiocrine factor EGF like-7 (EGFL7) mRNA and protein. MM cells both produced EGFL7 and expressed the functional EGFL7 receptor integrin ß 3 (ITGB3), resulting in ITGB3 phosphorylation and focal adhesion kinase activation. Overexpression of ITGB3 or EGFL7 enhanced MM cell adhesion and proliferation. Intriguingly, ITGB3 overexpression upregulated the transcription factor Krüppel-like factor 2 (KLF2), which further enhanced EGFL7 transcription in MM cells, thereby establishing an EGFL7-ITGB3-KLF2-EGFL7 amplification loop that supports MM cell survival and proliferation. EGFL7 expression was found in certain plasma cells of patients with refractory MM and of patients at primary diagnosis. NOD.CB17-Prkdc/J mice transplanted with MM cells showed elevated human plasma EGFL7 levels. EGFL7 knockdown in patient-derived MM cells and treatment with neutralizing antibodies against EGFL7 inhibited MM cell growth in vitro and in vivo. We demonstrate that the standard-of-care MM drug bortezomib upregulates EGFL7, ITGB3, and KLF2 expression in MM cells. Inhibition of EGFL7 signaling in synergy with BTZ may provide a novel strategy for inhibiting MM cell proliferation.


Assuntos
Fatores de Crescimento Endotelial , Mieloma Múltiplo , Animais , Proteínas de Ligação ao Cálcio , Família de Proteínas EGF , Fatores de Crescimento Endotelial/metabolismo , Humanos , Integrina beta3/genética , Fatores de Transcrição Kruppel-Like , Camundongos , Camundongos Endogâmicos NOD , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Recidiva Local de Neoplasia , Fatores de Transcrição
15.
FASEB J ; 33(3): 3465-3480, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30458112

RESUMO

The multifunctional endocytic receptor low-density lipoprotein receptor-related protein (LRP)1 has recently been identified as a hub within a biomarker network for multicancer clinical outcome prediction. The mechanism how LRP1 modulates cancer progression is poorly understood. In this study we found that LRP1 and one of its ligands, tissue plasminogen activator (tPA), are expressed in melanoma cells and control melanoma growth and lung metastasis in vivo. Mechanistic studies were performed on 2 melanoma cancer cell lines, B16F10 and the B16F1 cells, both of which form primary melanoma tumors, but only B16F10 cells metastasize to the lungs. Tumor-, but not niche cell-derived tPA, enhanced melanoma cell proliferation in tPA-/- mice. Gain-of-function experiments revealed that melanoma LRP1 is critical for tumor growth, recruitment of mesenchymal stem cells into the tumor bed, and metastasis. Melanoma LRP1 was found to enhance ERK activation, resulting in increased matrix metalloproteinase (MMP)-9 RNA, protein, and secreted activity, a well-known modulator of melanoma metastasis. Restoration of LRP1 and tPA in the less aggressive, poorly metastatic B16F1 tumor cells enhanced tumor cell proliferation and led to massive lung metastasis in murine tumor models. Antimelanoma drug treatment induced tPA and LRP1 expression. tPA or LRP1 knockdown enhanced chemosensitivity in melanoma cells. Our results identify the tPA-LRP1 pathway as a key switch that drives melanoma progression, in part by modulating the cellular composition and proteolytic makeup of the tumor niche. Targeting this pathway may be a novel treatment strategy in combination treatments for melanoma.-Salama, Y., Lin, S.-Y., Dhahri, D., Hattori, K., Heissig, B. The fibrinolytic factor tPA drives LRP1-mediated melanoma growth and metastasis.


Assuntos
Proliferação de Células/genética , Melanoma Experimental/genética , Melanoma Experimental/patologia , Receptores de LDL/genética , Ativador de Plasminogênio Tecidual/genética , Proteínas Supressoras de Tumor/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Neoplasias Pulmonares/genética , Metaloproteinase 9 da Matriz/genética , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7 , Transdução de Sinais/genética
16.
Biochem Biophys Res Commun ; 490(2): 209-216, 2017 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-28601636

RESUMO

Thymic regeneration is a crucial function that allows for the generation of mature T cells after myelosuppression like irradiation. However molecular drivers involved in this process remain undefined. Here, we report that the angiogenic factor, epidermal growth factor-like domain 7 (Egfl7), is expressed on steady state thymic endothelial cells (ECs) and further upregulated under stress like post-irradiation. Egfl7 overexpression increased intrathymic early thymic precursors (ETPs) and expanded thymic ECs. Mechanistically, we show that Egfl7 overexpression caused Flt3 upregulation in ETPs and thymic ECs, and increased Flt3 ligand plasma elevation in vivo. Selective Flt3 blockade prevented Egfl7-driven ETP expansion, and Egfl7-mediated thymic EC expansion in vivo. We propose that the angiogenic factor Egfl7 activates the Flt3/Flt3 ligand pathway and is a key molecular driver enforcing thymus progenitor generation and thereby directly linking endothelial cell biology to the production of T cell-based adaptive immunity.


Assuntos
Proteínas/metabolismo , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Família de Proteínas EGF , Camundongos , Camundongos Endogâmicos C57BL , Proteínas/genética
17.
Biochem Biophys Res Commun ; 488(2): 387-392, 2017 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-28501622

RESUMO

Aside from a role in clot dissolution, the fibrinolytic factor, plasmin is implicated in tumorigenesis. Although abnormalities of coagulation and fibrinolysis have been reported in multiple myeloma patients, the biological roles of fibrinolytic factors in multiple myeloma (MM) using in vivo models have not been elucidated. In this study, we established a murine model of fulminant MM with bone marrow and extramedullar engraftment after intravenous injection of B53 cells. We found that the fibrinolytic factor expression pattern in murine B53 MM cells is similar to the expression pattern reported in primary human MM cells. Pharmacological targeting of plasmin using the plasmin inhibitors YO-2 did not change disease progression in MM cell bearing mice although systemic plasmin levels was suppressed. Our findings suggest that although plasmin has been suggested to be a driver for disease progression using clinical patient samples in MM using mostly in vitro studies, here we demonstrate that suppression of plasmin generation or inhibition of plasmin cannot alter MM progression in vivo.


Assuntos
Fibrinolisina/metabolismo , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Animais , Antifibrinolíticos/química , Antifibrinolíticos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Bortezomib/administração & dosagem , Bortezomib/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/química , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Fibrinolisina/antagonistas & inibidores , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Neoplasias Experimentais/tratamento farmacológico , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
Blood ; 130(1): 59-72, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28325863

RESUMO

Macrophage activation syndrome (MAS) is a life-threatening disorder characterized by a cytokine storm and multiorgan dysfunction due to excessive immune activation. Although abnormalities of coagulation and fibrinolysis are major components of MAS, the role of the fibrinolytic system and its key player, plasmin, in the development of MAS remains to be solved. We established a murine model of fulminant MAS by repeated injections of Toll-like receptor-9 (TLR-9) agonist and d-galactosamine (DG) in immunocompetent mice. We found plasmin was excessively activated during the progression of fulminant MAS in mice. Genetic and pharmacological inhibition of plasmin counteracted MAS-associated lethality and other related symptoms. We show that plasmin regulates the influx of inflammatory cells and the production of inflammatory cytokines/chemokines. Collectively, our findings identify plasmin as a decisive checkpoint in the inflammatory response during MAS and a potential novel therapeutic target for MAS.


Assuntos
Fibrinolisina/metabolismo , Síndrome de Ativação Macrofágica/metabolismo , Animais , Modelos Animais de Doenças , Fibrinolisina/genética , Galactosamina/farmacologia , Humanos , Síndrome de Ativação Macrofágica/tratamento farmacológico , Síndrome de Ativação Macrofágica/genética , Síndrome de Ativação Macrofágica/patologia , Camundongos , Camundongos Knockout , Células RAW 264.7 , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
19.
FASEB J ; 31(6): 2625-2637, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28270519

RESUMO

Adhesive small bowel obstruction remains a common problem for surgeons. After surgery, platelet aggregation contributes to coagulation cascade and fibrin clot formation. With clotting, fibrin degradation is simultaneously enhanced, driven by tissue plasminogen activator-mediated cleavage of plasminogen to form plasmin. The aim of this study was to investigate the cellular events and proteolytic responses that surround plasminogen activator inhibitor (PAI-1; Serpine1) inhibition of postoperative adhesion. Peritoneal adhesion was induced by gauze deposition in the abdominal cavity in C57BL/6 mice and those that were deficient in fibrinolytic factors, such as Plat-/- and Serpine1-/- In addition, C57BL/6 mice were treated with the novel PAI-1 inhibitor, TM5275. Some animals were treated with clodronate to deplete macrophages. Epidermal growth factor (EGF) experiments were performed to understand the role of macrophages and how EGF contributes to adhesion. In the early phase of adhesive small bowel obstruction, increased PAI-1 activity was observed in the peritoneal cavity. Genetic and pharmacologic PAI-1 inhibition prevented progression of adhesion and increased circulating plasmin. Whereas Serpine1-/- mice showed intra-abdominal bleeding, mice that were treated with TM5275 did not. Mechanistically, PAI-1, in combination with tissue plasminogen activator, served as a chemoattractant for macrophages that, in turn, secreted EGF and up-regulated the receptor, HER1, on peritoneal mesothelial cells, which led to PAI-1 secretion, further fueling the vicious cycle of impaired fibrinolysis at the adhesive site. Controlled inhibition of PAI-1 not only enhanced activation of the fibrinolytic system, but also prevented recruitment of EGF-secreting macrophages. Pharmacologic PAI-1 inhibition ameliorated adhesion formation in a macrophage-dependent manner.-Honjo, K., Munakata, S., Tashiro, Y., Salama, Y., Shimazu, H., Eiamboonsert, S., Dhahri, D., Ichimura, A., Dan, T., Miyata, T., Takeda, K., Sakamoto, K., Hattori, K., Heissig, B. Plasminogen activator inhibitor-1 regulates macrophage-dependent postoperative adhesion by enhancing EGF-HER1 signaling in mice.


Assuntos
Receptores ErbB/metabolismo , Macrófagos/fisiologia , Piperazinas/uso terapêutico , Serpina E2/antagonistas & inibidores , Aderências Teciduais/patologia , para-Aminobenzoatos/uso terapêutico , Animais , Antígeno CD11b , Ensaios de Migração Celular , Movimento Celular/efeitos dos fármacos , Cetuximab/farmacologia , Fator de Crescimento Epidérmico , Receptores ErbB/genética , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Complicações Pós-Operatórias/prevenção & controle , Células RAW 264.7 , Serpina E2/genética , Serpina E2/metabolismo , Transdução de Sinais , Aderências Teciduais/metabolismo , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo
20.
Phys Rev Lett ; 117(15): 152002, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27768344

RESUMO

We investigate novel transport phenomena in a chiral fluid originated from an interplay between a vorticity and strong magnetic field, which induces a redistribution of vector charges in the system and an axial current along the magnetic field. The corresponding transport coefficients are obtained from an energy-shift argument for the chiral fermions in the lowest Landau level due to a spin-vorticity coupling and also from diagrammatic computations on the basis of the linear response theory. Based on consistent results from both methods, we observe that the transport coefficients are proportional to the anomaly coefficient and are independent of temperature and chemical potential. We therefore speculate that these transport phenomena are connected to quantum anomaly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA