Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 352: 163-178, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36314534

RESUMO

Drug delivery systems (DDS) for oral delivery of peptide drugs contain excipients that facilitate and enhance absorption. However, little knowledge exists on how DDS excipients such as permeation enhancers interact with the gastrointestinal mucus barrier. This study aimed to investigate interactions of the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (SNAC) with ex vivo porcine intestinal mucus (PIM), ex vivo porcine gastric mucus (PGM), as well as with in vitro biosimilar mucus (BM) by profiling their physical and barrier properties upon exposure to SNAC. Bulk mucus permeability studies using the peptides cyclosporine A and vancomycin, ovalbumin as a model protein, as well as fluorescein-isothiocyanate dextrans (FDs) of different molecular weights and different surface charges were conducted in parallel to mucus retention force studies using a texture analyzer, rheological studies, cryo-scanning electron microscopy (cryo-SEM), and single particle tracking of fluorescence-labelled nanoparticles to investigate the effects of the SNAC-mucus interaction. The exposure of SNAC to PIM increased the mucus retention force, storage modulus, viscosity, increased nanoparticle confinement within PIM as well as decreased the permeation of cyclosporine A and ovalbumin through PIM. Surprisingly, the viscosity of PGM and the permeation of cyclosporine A and ovalbumin through PGM was unaffected by the presence of SNAC, thus the effect of SNAC depended on the regional site that mucus was collected from. In the absence of SNAC, the permeation of different molecular weight and differently charged FDs through PIM was comparable to that through BM. However, while bulk permeation of neither of the FDs through PIM was affected by SNAC, the presence of SNAC decreased the permeation of FD4 and increased the permeation of FD150 kDa through BM. Additionally, and in contrast to observations in PIM, nanoparticle confinement within BM remained unaffected by the presence of SNAC. In conclusion, the present study showed that SNAC altered the physical and barrier properties of PIM, but not of PGM. The effects of SNAC in PIM were not observed in the BM in vitro model. Altogether, the study highlights the need for further understanding how permeation enhancers influence the mucus barrier and illustrates that the selected mucus model for such studies should be chosen with care.


Assuntos
Excipientes , Absorção Intestinal , Suínos , Animais , Excipientes/farmacologia , Caprilatos/análise , Caprilatos/metabolismo , Caprilatos/farmacologia , Ovalbumina/metabolismo , Sódio/metabolismo , Ciclosporina/farmacologia , Permeabilidade , Preparações Farmacêuticas/metabolismo , Muco/metabolismo , Peptídeos/metabolismo
2.
Methods Enzymol ; 581: 227-256, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27793281

RESUMO

Single-molecule measurements are emerging as a powerful tool to study the individual behavior of biomolecules, revolutionizing our understanding of biological processes. Their ability to measure the distribution of behaviors, instead of the average behavior, allows the direct observation and quantification of the activity, abundance, and lifetime of multiple states and transient intermediates in the energy landscape that are typically averaged out in nonsynchronized ensemble measurements. Studying the function of membrane proteins at the single-molecule level remains a formidable challenge, and to date there is limited number of available functional assays. In this chapter, we describe in detail our recently developed methodology to reconstitute membrane proteins such as the integral membrane protein cytochrome P450 oxidoreductase on membrane systems such as Nanodiscs and study their functional dynamics by recordings at the fundamental resolution of individual catalytic turnovers using prefluorescent substrate analogues. We initially describe the methodology for reconstitution, surface immobilization, and data acquisition of individual enzyme catalytic turnovers. We then explain in detail the statistical analysis, with an emphasis on the model development, the potential pitfalls for correctly identifying the abundance, lifetime, and likelihood of sampling protein functional states. This methodology may enable studies of functional dynamics and their role in biology for a spectrum of membrane proteins.


Assuntos
Microscopia de Fluorescência/métodos , NADPH-Ferri-Hemoproteína Redutase/isolamento & purificação , Imagem Individual de Molécula/métodos , Bicamadas Lipídicas/química , Proteínas de Membrana/química , NADPH-Ferri-Hemoproteína Redutase/química , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA