Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 12(1): 2201147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089449

RESUMO

The clinical successes of immune checkpoint blockade (ICB) in advanced cancer patients have recently spurred the clinical implementation of ICB in the neoadjuvant and perioperative setting. However, how neoadjuvant ICB therapy affects the systemic immune landscape and metastatic spread remains to be established. Tumors promote both local and systemic expansion of regulatory T cells (Tregs), which are key orchestrators of tumor-induced immunosuppression, contributing to immune evasion, tumor progression and metastasis. Tregs express inhibitory immune checkpoint molecules and thus may be unintended targets for ICB therapy counteracting its efficacy. Using ICB-refractory models of spontaneous primary and metastatic breast cancer that recapitulate the poor ICB response of breast cancer patients, we observed that combined anti-PD-1 and anti-CTLA-4 therapy inadvertently promotes proliferation and activation of Tregs in the tumor, tumor-draining lymph node and circulation. Also in breast cancer patients, Treg levels were elevated upon ICB. Depletion of Tregs during neoadjuvant ICB in tumor-bearing mice not only reshaped the intratumoral immune landscape into a state favorable for ICB response but also induced profound and persistent alterations in systemic immunity, characterized by elevated CD8+ T cells and NK cells and durable T cell activation that was maintained after treatment cessation. While depletion of Tregs in combination with neoadjuvant ICB did not inhibit primary tumor growth, it prolonged metastasis-related survival driven predominantly by CD8+ T cells. This study demonstrates that neoadjuvant ICB therapy of breast cancer can be empowered by simultaneous targeting of Tregs, extending metastasis-related survival, independent of a primary tumor response.


Assuntos
Neoplasias da Mama , Ativação Linfocitária , Linfócitos T Reguladores , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Linfócitos T Reguladores/imunologia , Terapia Neoadjuvante , Inibidores de Checkpoint Imunológico/uso terapêutico , Células Matadoras Naturais/imunologia , Células Mieloides/imunologia , Metástase Neoplásica , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia
2.
Cancer Cell ; 41(1): 106-123.e10, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36525971

RESUMO

Immune checkpoint blockade (ICB) has heralded a new era in cancer therapy. Research into the mechanisms underlying response to ICB has predominantly focused on T cells; however, effective immune responses require tightly regulated crosstalk between innate and adaptive immune cells. Here, we combine unbiased analysis of blood and tumors from metastatic breast cancer patients treated with ICB with mechanistic studies in mouse models of breast cancer. We observe an increase in systemic and intratumoral eosinophils in patients and mice responding to ICB treatment. Mechanistically, ICB increased IL-5 production by CD4+ T cells, stimulating elevated eosinophil production from the bone marrow, leading to systemic eosinophil expansion. Additional induction of IL-33 by ICB-cisplatin combination or recombinant IL-33 promotes intratumoral eosinophil infiltration and eosinophil-dependent CD8+ T cell activation to enhance ICB response. This work demonstrates the critical role of eosinophils in ICB response and provides proof-of-principle for eosinophil engagement to enhance ICB efficacy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Camundongos , Animais , Inibidores de Checkpoint Imunológico/uso terapêutico , Eosinófilos/patologia , Interleucina-5/uso terapêutico , Interleucina-33 , Neoplasias/tratamento farmacológico , Linfócitos T CD8-Positivos , Apresentação de Antígeno , Linfócitos T CD4-Positivos/patologia
3.
Cells ; 11(15)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35954190

RESUMO

Neutrophils are not only crucial immune cells for the neutralization of pathogens during infections, but they are also key players in tissue repair and cancer. Several methods are available to investigate the in vivo role of neutrophils in these conditions, including the depletion of neutrophils with neutralizing antibodies against Ly6G, or the blockade of neutrophil recruitment with CXCR2 inhibitors. A limited number of transgenic mouse models were generated that rely on the disruption of genes important for neutrophil development or on the injection of diphtheria toxin to induce neutrophil ablation. However, these methods have various limitations, including a lack of neutrophil specificity, a lack of long-term efficacy, or a lack of the ability to conditionally deplete neutrophils. Therefore, we generated a transgenic mouse model for the inducible and reversible ablation of neutrophils using the ATTAC (Apoptosis Through Targeted Activation of Caspase 8) approach. With the ATTAC strategy, which relies on the expression of the caspase 8-FKBP fusion protein, apoptosis is induced upon administration of a chemical dimerizer (FK506 analogue) that facilitates the dimerization and activation of caspase 8. In order to achieve specific neutrophil depletion, we cloned the ATTAC construct under the human migration inhibitory factor-related protein 8 (hMRP8) promotor. The newly generated hMRP8-ATTAC mice expressed high levels of the transgene in neutrophils, and, as a consequence, dimerizer injection induced an efficient reduction of neutrophil levels in all the organs analyzed under homeostatic conditions. In situations with extensive pressure on the bone marrow to mobilize neutrophils, for instance in the context of cancer, effective neutrophil depletion in this model requires further optimization. In conclusion, we here describe the generation and characterization of a new transgenic model for conditional neutrophil ablation and highlight the need to improve the ATTAC strategy for the depletion of large numbers of rapidly generated short-lived cells, such as neutrophils.


Assuntos
Neoplasias , Neutrófilos , Animais , Caspase 8/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo
4.
Oncoimmunology ; 11(1): 2063225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35481289

RESUMO

While regulatory T cells (Tregs) and macrophages have been recognized as key orchestrators of cancer-associated immunosuppression, their cellular crosstalk within tumors has been poorly characterized. Here, using spontaneous models for breast cancer, we demonstrate that tumor-associated macrophages (TAMs) contribute to the intratumoral accumulation of Tregs by promoting the conversion of conventional CD4+ T cells (Tconvs) into Tregs. Mechanistically, two processes were identified that independently contribute to this process. While TAM-derived TGF-ß directly promotes the conversion of CD4+ Tconvs into Tregsin vitro, we additionally show that TAMs enhance PD-1 expression on CD4+ T cells. This indirectly contributes to the intratumoral accumulation of Tregs, as loss of PD-1 on CD4+ Tconvs abrogates intratumoral conversion of adoptively transferred CD4+ Tconvs into Tregs. Combined, this study provides insights into the complex immune cell crosstalk between CD4+ T cells and TAMs in the tumor microenvironment of breast cancer, and further highlights that therapeutic exploitation of macrophages may be an attractive immune intervention to limit the accumulation of Tregs in breast tumors.


Assuntos
Neoplasias da Mama , Linfócitos T Reguladores , Feminino , Humanos , Tolerância Imunológica , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Macrófagos Associados a Tumor
5.
Cell Rep ; 38(9): 110447, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235800

RESUMO

Breast cancer is accompanied by systemic immunosuppression, which facilitates metastasis formation, but how this shapes organotropism of metastasis is poorly understood. Here, we investigate the impact of mammary tumorigenesis on regulatory T cells (Tregs) in distant organs and how this affects multi-organ metastatic disease. Using a preclinical mouse mammary tumor model that recapitulates human metastatic breast cancer, we observe systemic accumulation of activated, highly immunosuppressive Tregs during primary tumor growth. Tumor-educated Tregs show tissue-specific transcriptional rewiring in response to mammary tumorigenesis. This has functional consequences for organotropism of metastasis, as Treg depletion reduces metastasis to tumor-draining lymph nodes, but not to lungs. Mechanistically, we find that Tregs control natural killer (NK) cell activation in lymph nodes, thereby facilitating lymph node metastasis. In line, an increased Treg/NK cell ratio is observed in sentinel lymph nodes of breast cancer patients compared with healthy controls. This study highlights that immune regulation of metastatic disease is highly organ dependent.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/patologia , Carcinogênese/patologia , Feminino , Humanos , Células Matadoras Naturais/patologia , Linfonodos , Metástase Linfática/patologia , Camundongos
6.
Front Oncol ; 11: 786191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976826

RESUMO

Macrophages can promote tumor development. Preclinically, targeting macrophages by colony-stimulating factor 1 (CSF1)/CSF1 receptor (CSF1R) monoclonal antibodies (mAbs) enhances conventional therapeutics in combination treatments. The physiological distribution and tumor uptake of CSF1R mAbs are unknown. Therefore, we radiolabeled a murine CSF1R mAb and preclinically visualized its biodistribution by PET. CSF1R mAb was conjugated to N-succinyl-desferrioxamine (N-suc-DFO) and subsequently radiolabeled with zirconium-89 (89Zr). Optimal protein antibody dose was first determined in non-tumor-bearing mice to assess physiological distribution. Next, biodistribution of optimal protein dose and 89Zr-labeled isotype control was compared with PET and ex vivo biodistribution after 24 and 72 h in mammary tumor-bearing mice. Tissue autoradiography and immunohistochemistry determined radioactivity distribution and tissue macrophage presence, respectively. [89Zr]Zr-DFO-N-suc-CSF1R-mAb optimal protein dose was 10 mg/kg, with blood pool levels of 10 ± 2% injected dose per gram tissue (ID/g) and spleen and liver uptake of 17 ± 4 and 11 ± 4%ID/g at 72 h. In contrast, 0.4 mg/kg of [89Zr]Zr-DFO-N-suc-CSF1R mAb was eliminated from circulation within 24 h; spleen and liver uptake was 126 ± 44% and 34 ± 7%ID/g, respectively. Tumor-bearing mice showed higher uptake of [89Zr]Zr-DFO-N-suc-CSF1R-mAb in the liver, lymphoid tissues, duodenum, and ileum, but not in the tumor than did 89Zr-labeled control at 72 h. Immunohistochemistry and autoradiography showed that 89Zr was localized to macrophages within lymphoid tissues. Following [89Zr]Zr-DFO-N-suc-CSF1R-mAb administration, tumor macrophages were almost absent, whereas isotype-group tumors contained over 500 cells/mm2. We hypothesize that intratumoral macrophage depletion by [89Zr]Zr-DFO-N-suc-CSF1R-mAb precluded tumor uptake higher than 89Zr-labeled control. Translation of molecular imaging of macrophage-targeting therapeutics to humans may support macrophage-directed therapeutic development.

7.
Cell Rep ; 29(5): 1221-1235.e5, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665635

RESUMO

Tumor-associated macrophages (TAMs) are frequently the most abundant immune cells in cancers and are associated with poor survival. Here, we generated TAM molecular signatures from K14cre;Cdh1flox/flox;Trp53flox/flox (KEP) and MMTV-NeuT (NeuT) transgenic mice that resemble human invasive lobular carcinoma (ILC) and HER2+ tumors, respectively. Determination of TAM-specific signatures requires comparison with healthy mammary tissue macrophages to avoid overestimation of gene expression differences. TAMs from the two models feature a distinct transcriptomic profile, suggesting that the cancer subtype dictates their phenotype. The KEP-derived signature reliably correlates with poor overall survival in ILC but not in triple-negative breast cancer patients, indicating that translation of murine TAM signatures to patients is cancer subtype dependent. Collectively, we show that a transgenic mouse tumor model can yield a TAM signature relevant for human breast cancer outcome prognosis and provide a generalizable strategy for determining and applying immune cell signatures provided the murine model reflects the human disease.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Perfilação da Expressão Gênica , Macrófagos/metabolismo , Neoplasias Mamárias Animais/patologia , Transcrição Gênica , Animais , Carcinogênese/genética , Carcinogênese/patologia , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Mamárias Animais/genética , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Fenótipo , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Transcriptoma/genética , Resultado do Tratamento
8.
Nature ; 572(7770): 538-542, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31367040

RESUMO

Cancer-associated systemic inflammation is strongly linked to poor disease outcome in patients with cancer1,2. For most human epithelial tumour types, high systemic neutrophil-to-lymphocyte ratios are associated with poor overall survival3, and experimental studies have demonstrated a causal relationship between neutrophils and metastasis4,5. However, the cancer-cell-intrinsic mechanisms that dictate the substantial heterogeneity in systemic neutrophilic inflammation between tumour-bearing hosts are largely unresolved. Here, using a panel of 16 distinct genetically engineered mouse models for breast cancer, we uncover a role for cancer-cell-intrinsic p53 as a key regulator of pro-metastatic neutrophils. Mechanistically, loss of p53 in cancer cells induced the secretion of WNT ligands that stimulate tumour-associated macrophages to produce IL-1ß, thus driving systemic inflammation. Pharmacological and genetic blockade of WNT secretion in p53-null cancer cells reverses macrophage production of IL-1ß and subsequent neutrophilic inflammation, resulting in reduced metastasis formation. Collectively, we demonstrate a mechanistic link between the loss of p53 in cancer cells, secretion of WNT ligands and systemic neutrophilia that potentiates metastatic progression. These insights illustrate the importance of the genetic makeup of breast tumours in dictating pro-metastatic systemic inflammation, and set the stage for personalized immune intervention strategies for patients with cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Inflamação/genética , Inflamação/patologia , Metástase Neoplásica/patologia , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteínas Wnt/metabolismo , Animais , Neoplasias da Mama/complicações , Modelos Animais de Doenças , Feminino , Inflamação/complicações , Inflamação/imunologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Camundongos , Neutrófilos/imunologia
9.
Nat Cell Biol ; 21(4): 511-521, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30886344

RESUMO

Recent studies have revealed a role for macrophages and neutrophils in limiting chemotherapy efficacy; however, the mechanisms underlying the therapeutic benefit of myeloid-targeting agents in combination with chemotherapy are incompletely understood. Here, we show that targeting tumour-associated macrophages by colony-stimulating factor-1 receptor (CSF-1R) blockade in the K14cre;Cdh1F/F;Trp53F/F transgenic mouse model for breast cancer stimulates intratumoural type I interferon (IFN) signalling, which enhances the anticancer efficacy of platinum-based chemotherapeutics. Notably, anti-CSF-1R treatment also increased intratumoural expression of type I IFN-stimulated genes in patients with cancer, confirming that CSF-1R blockade is a powerful strategy to trigger an intratumoural type I IFN response. By inducing an inflamed, type I IFN-enriched tumour microenvironment and by further targeting immunosuppressive neutrophils during cisplatin therapy, antitumour immunity was activated in this poorly immunogenic breast cancer mouse model. These data illustrate the importance of breaching multiple layers of immunosuppression during cytotoxic therapy to successfully engage antitumour immunity in breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Interferon Tipo I/fisiologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/secundário , Camundongos , Camundongos Knockout , Camundongos Transgênicos
10.
Oncoimmunology ; 6(8): e1334744, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919995

RESUMO

Patients with primary solid malignancies frequently exhibit signs of systemic inflammation. Notably, elevated levels of neutrophils and their associated soluble mediators are regularly observed in cancer patients, and correlate with reduced survival and increased metastasis formation. Recently, we demonstrated a mechanistic link between mammary tumor-induced IL17-producing γδ T cells, systemic expansion of immunosuppressive neutrophils and metastasis formation in a genetically engineered mouse model for invasive breast cancer. How tumors orchestrate this systemic inflammatory cascade to facilitate dissemination remains unclear. Here we show that activation of this cascade relies on CCL2-mediated induction of IL1ß in tumor-associated macrophages. In line with these findings, expression of CCL2 positively correlates with IL1Β and macrophage markers in human breast tumors. We demonstrate that blockade of CCL2 in mammary tumor-bearing mice results in reduced IL17 production by γδ T cells, decreased neutrophil expansion and enhanced CD8+ T cell activity. These results highlight a new role for CCL2 in facilitating the breast cancer-induced pro-metastatic systemic inflammatory γδ T cell - IL17 - neutrophil axis.

11.
Nature ; 522(7556): 345-348, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25822788

RESUMO

Metastatic disease remains the primary cause of death for patients with breast cancer. The different steps of the metastatic cascade rely on reciprocal interactions between cancer cells and their microenvironment. Within this local microenvironment and in distant organs, immune cells and their mediators are known to facilitate metastasis formation. However, the precise contribution of tumour-induced systemic inflammation to metastasis and the mechanisms regulating systemic inflammation are poorly understood. Here we show that tumours maximize their chance of metastasizing by evoking a systemic inflammatory cascade in mouse models of spontaneous breast cancer metastasis. We mechanistically demonstrate that interleukin (IL)-1ß elicits IL-17 expression from gamma delta (γδ) T cells, resulting in systemic, granulocyte colony-stimulating factor (G-CSF)-dependent expansion and polarization of neutrophils in mice bearing mammary tumours. Tumour-induced neutrophils acquire the ability to suppress cytotoxic T lymphocytes carrying the CD8 antigen, which limit the establishment of metastases. Neutralization of IL-17 or G-CSF and absence of γδ T cells prevents neutrophil accumulation and downregulates the T-cell-suppressive phenotype of neutrophils. Moreover, the absence of γδ T cells or neutrophils profoundly reduces pulmonary and lymph node metastases without influencing primary tumour progression. Our data indicate that targeting this novel cancer-cell-initiated domino effect within the immune system--the γδ T cell/IL-17/neutrophil axis--represents a new strategy to inhibit metastatic disease.


Assuntos
Neoplasias da Mama/patologia , Interleucina-17/biossíntese , Metástase Neoplásica/imunologia , Metástase Neoplásica/patologia , Neutrófilos/metabolismo , Subpopulações de Linfócitos T/metabolismo , Animais , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Fator Estimulador de Colônias de Granulócitos/imunologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Interleucina-17/imunologia , Interleucina-1beta/imunologia , Pulmão/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Metástase Linfática/imunologia , Metástase Linfática/patologia , Ativação Linfocitária , Camundongos , Neutrófilos/citologia , Neutrófilos/imunologia , Fenótipo , Subpopulações de Linfócitos T/imunologia , Microambiente Tumoral
12.
Pain ; 156(8): 1424-1432, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25734987

RESUMO

Morphine and other opioid analgesics are potent pain-relieving agents routinely used for pain management in patients with cancer. However, these drugs have recently been associated with a worse relapse-free survival in patients with surgical cancer, thus suggesting that morphine adversely affects cancer progression and relapse. In this study, we evaluated the impact of morphine on breast cancer progression, metastatic dissemination, and outgrowth of minimal residual disease. Using preclinical mouse models for metastatic invasive lobular and HER2 breast cancer, we show that analgesic doses of morphine do not affect mammary tumor growth, angiogenesis, and the composition of tumor-infiltrating immune cells. Our studies further demonstrate that morphine, administered in the presence or absence of surgery-induced tissue damage, neither facilitates de novo metastatic dissemination nor promotes outgrowth of minimal residual disease after surgery. Together, these findings indicate that opioid analgesics can be used safely for perioperative pain management in patients with cancer and emphasize that current standards of "good clinical practice" should be maintained.


Assuntos
Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Glândulas Mamárias Animais/efeitos dos fármacos , Morfina/efeitos adversos , Dor/tratamento farmacológico , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Animais , Neoplasias da Mama/psicologia , Carcinoma Lobular/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Genes erbB-2/genética , Humanos , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Morfina/administração & dosagem , Invasividade Neoplásica/patologia , Dor/etiologia , Dor/psicologia , Resultado do Tratamento
13.
Cancer Res ; 73(1): 353-63, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23151903

RESUMO

Metastatic disease accounts for more than 90% of cancer-related deaths, but the development of effective antimetastatic agents has been hampered by the paucity of clinically relevant preclinical models of human metastatic disease. Here, we report the development of a mouse model of spontaneous breast cancer metastasis, which recapitulates key events in its formation and clinical course. Specifically, using the conditional K14cre;Cdh1(F/F);Trp53(F/F) model of de novo mammary tumor formation, we orthotopically transplanted invasive lobular carcinoma (mILC) fragments into mammary glands of wild-type syngeneic hosts. Once primary tumors were established in recipient mice, we mimicked the clinical course of treatment by conducting a mastectomy. After surgery, recipient mice succumbed to widespread overt metastatic disease in lymph nodes, lungs, and gastrointestinal tract. Genomic profiling of paired mammary tumors and distant metastases showed that our model provides a unique tool to further explore the biology of metastatic disease. Neoadjuvant and adjuvant intervention studies using standard-of-care chemotherapeutics showed the value of this model in determining therapeutic agents that can target early- and late-stage metastatic disease. In obtaining a more accurate preclinical model of metastatic lobular breast cancer, our work offers advances supporting the development of more effective treatment strategies for metastatic disease.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Lobular/patologia , Neoplasias Mamárias Experimentais/patologia , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Animais , Neoplasias da Mama/genética , Carcinoma Lobular/genética , Feminino , Imuno-Histoquímica , Hibridização In Situ , Neoplasias Mamárias Experimentais/genética , Camundongos , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Transplante de Neoplasias
14.
J Pathol ; 228(3): 300-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22926799

RESUMO

The leucine-rich repeat-containing heterotrimeric guanine nucleotide-binding protein-coupled receptor 5 (LGR5) has been identified as a marker of cycling stem cells in several epithelial tissues, including small intestine, colon, stomach and hair follicle. To investigate whether LGR5 also marks mammary epithelial stem cells, we performed in situ lineage-tracing studies and mammary gland reconstitutions with LGR5-expressing mammary epithelial cells. Interestingly, the LGR5 progeny population in mammary epithelium switches from the luminal to the myoepithelial compartment during the first 12 days of postnatal development, likely reflecting local changes in Wnt signalling. Together, our findings point to a stage-specific contribution of LGR5-expressing cells to luminal and basal epithelial lineages during postnatal mammary gland development.


Assuntos
Linhagem da Célula/fisiologia , Células Epiteliais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Morfogênese/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Células Epiteliais/fisiologia , Feminino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/fisiologia , Camundongos , Camundongos Knockout , Modelos Animais , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Proteínas Wnt/fisiologia
16.
J Pathol ; 224(1): 56-66, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21480230

RESUMO

The tumour-modulating effects of the endogenous adaptive immune system are rather paradoxical. Whereas some clinical and experimental observations offer compelling evidence for the existence of immunosurveillance, other studies have revealed promoting effects of the adaptive immune system on primary cancer development and metastatic disease. We examined the functional significance of the adaptive immune system as a regulator of spontaneous HER2(+) breast tumourigenesis and pulmonary metastasis formation, using the MMTV-NeuT mouse model in which mammary carcinogenesis is induced by transgenic expression of the activated HER2/neu oncogene. Although T and B lymphocytes infiltrate human and experimental HER2(+) breast tumours, genetic elimination of the adaptive immune system does not affect development of premalignant hyperplasias or primary breast cancers. In addition, we demonstrate that pulmonary metastasis formation in MMTV-NeuT mice is not dependent on the adaptive immune system. Thus, our findings reveal that spontaneous HER2-driven mammary tumourigenesis and metastasis formation are neither suppressed, nor altered by immunosurveillance mechanisms, nor promoted by the adaptive immune system.


Assuntos
Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/imunologia , Receptor ErbB-2/metabolismo , Imunidade Adaptativa/imunologia , Animais , Transformação Celular Neoplásica/imunologia , Feminino , Humanos , Tolerância Imunológica/imunologia , Vigilância Imunológica/imunologia , Neoplasias Pulmonares/imunologia , Subpopulações de Linfócitos/imunologia , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA