Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139319

RESUMO

Organ transplantation has enhanced the length and quality of life of patients suffering from life-threatening organ failure. Donors deceased after brain death (DBDDs) have been a primary source of organs for transplantation for a long time, but the need to find new strategies to face organ shortages has led to the broadening of the criteria for selecting DBDDs and advancing utilization of donors deceased after circulatory death. These new sources of organs come with an elevated risk of procuring organs of suboptimal quality. Whatever the source of organs for transplant, one constant issue is the occurrence of ischemia-reperfusion (IR) injury. The latter results from the variation of oxygen supply during the sequence of ischemia and reperfusion, from organ procurement to the restoration of blood circulation, triggering many deleterious interdependent processes involving biochemical, immune, vascular and coagulation systems. In this review, we focus on the roles of thrombo-inflammation and coagulation as part of IR injury, and we give an overview of the state of the art and perspectives on anticoagulant therapies in the field of transplantation, discussing benefits and risks and proposing a strategic guide to their use during transplantation procedures.


Assuntos
Transplante de Órgãos , Traumatismo por Reperfusão , Humanos , Anticoagulantes/uso terapêutico , Qualidade de Vida , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Transplante de Órgãos/efeitos adversos , Isquemia
2.
Lancet ; 402(10408): 1158-1169, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37598688

RESUMO

BACKGROUND: Cross-species immunological incompatibilities have hampered pig-to-human xenotransplantation, but porcine genome engineering recently enabled the first successful experiments. However, little is known about the immune response after the transplantation of pig kidneys to human recipients. We aimed to precisely characterise the early immune responses to the xenotransplantation using a multimodal deep phenotyping approach. METHODS: We did a complete phenotyping of two pig kidney xenografts transplanted to decedent humans. We used a multimodal strategy combining morphological evaluation, immunophenotyping (IgM, IgG, C4d, CD68, CD15, NKp46, CD3, CD20, and von Willebrand factor), gene expression profiling, and whole-transcriptome digital spatial profiling and cell deconvolution. Xenografts before implantation, wild-type pig kidney autografts, as well as wild-type, non-transplanted pig kidneys with and without ischaemia-reperfusion were used as controls. FINDINGS: The data collected from xenografts suggested early signs of antibody-mediated rejection, characterised by microvascular inflammation with immune deposits, endothelial cell activation, and positive xenoreactive crossmatches. Capillary inflammation was mainly composed of intravascular CD68+ and CD15+ innate immune cells, as well as NKp46+ cells. Both xenografts showed increased expression of genes biologically related to a humoral response, including monocyte and macrophage activation, natural killer cell burden, endothelial activation, complement activation, and T-cell development. Whole-transcriptome digital spatial profiling showed that antibody-mediated injury was mainly located in the glomeruli of the xenografts, with significant enrichment of transcripts associated with monocytes, macrophages, neutrophils, and natural killer cells. This phenotype was not observed in control pig kidney autografts or in ischaemia-reperfusion models. INTERPRETATION: Despite favourable short-term outcomes and absence of hyperacute injuries, our findings suggest that antibody-mediated rejection in pig-to-human kidney xenografts might be occurring. Our results suggest specific therapeutic targets towards the humoral arm of rejection to improve xenotransplantation results. FUNDING: OrganX and MSD Avenir.


Assuntos
Rejeição de Enxerto , Rim , Animais , Suínos , Humanos , Transplante Heterólogo , Anticorpos , Imunidade , Inflamação , Isquemia
3.
Front Immunol ; 14: 1099529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228593

RESUMO

Over the past thirty years, the complexity of the αß-T cell compartment has been enriched by the identification of innate-like T cells (ITCs), which are composed mainly of invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells. Based on animal studies using ischemia-reperfusion (IR) models, a key role has been attributed to iNKT cells in close connection with the alarmin/cytokine interleukin (IL)-33, as early sensors of cell-stress in the initiation of acute sterile inflammation. Here we have investigated whether the new concept of a biological axis of circulating iNKT cells and IL-33 applies to humans, and may be extended to other ITC subsets, namely MAIT and γδ-T cells, in the acute sterile inflammation sequence occurring during liver transplant (LT). From a prospective biological collection of recipients, we reported that LT was accompanied by an early and preferential activation of iNKT cells, as attested by almost 40% of cells having acquired the expression of CD69 at the end of LT (i.e. 1-3 hours after portal reperfusion), as opposed to only 3-4% of conventional T cells. Early activation of iNKT cells was positively correlated with the systemic release of the alarmin IL-33 at graft reperfusion. Moreover, in a mouse model of hepatic IR, iNKT cells were activated in the periphery (spleen), and recruited in the liver in WT mice, as early as the first hour after reperfusion, whereas this phenomenon was virtually missing in IL-33-deficient mice. Although to a lesser degree than iNKT cells, MAIT and γδ-T cells also seemed targeted during LT, as attested by 30% and 10% of them acquiring CD69 expression, respectively. Like iNKT cells, and in clear contrast to γδ-T cells, activation of MAIT cells during LT was closely associated with both release of IL-33 immediately after graft reperfusion and severity of liver dysfunction occurring during the first three post-operative days. All in all, this study identifies iNKT and MAIT cells in connection with IL-33 as new key cellular factors and mechanisms of acute sterile inflammation in humans. Further investigations are required to confirm the implication of MAIT and iNKT cell subsets, and to precisely assess their functions, in the clinical course of sterile inflammation accompanying LT.


Assuntos
Hepatopatias , Células T Matadoras Naturais , Animais , Humanos , Camundongos , Alarminas/metabolismo , Inflamação/metabolismo , Interleucina-33/metabolismo , Isquemia/metabolismo , Hepatopatias/metabolismo , Células T Matadoras Naturais/metabolismo , Estudos Prospectivos , Reperfusão
4.
Cell Mol Biol Lett ; 28(1): 43, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210499

RESUMO

BACKGROUND: Although metabolomics continues to expand in many domains of research, methodological issues such as sample type, extraction and analytical protocols have not been standardized, impeding proper comparison between studies and future research. METHODS: In the present study, five solvent-based and solid-phase extraction methods were investigated in both plasma and serum. All these extracts were analyzed using four liquid chromatography coupled with high resolution mass spectrometry (LC-MS) protocols, either in reversed or normal-phase and with both types of ionization. The performances of each method were compared according to putative metabolite coverage, method repeatability and also extraction parameters such as overlap, linearity and matrix effect; in both untargeted (global) and targeted approaches using fifty standard spiked analytes. RESULTS: Our results verified the broad specificity and outstanding accuracy of solvent precipitation, namely methanol and methanol/acetonitrile. We also reveal high orthogonality between methanol-based methods and SPE, providing the possibility of increased metabolome coverage, however we highlight that such potential benefits must be weighed against time constrains, sample consumption and the risk of low reproducibility of SPE method. Furthermore, we highlighted the careful consideration about matrix choice. Plasma showed the most suitable in this metabolomics approach combined with methanol-based methods. CONCLUSIONS: Our work proposes to facilitate rational design of protocols towards standardization of these approaches to improve the impact of metabolomics research.


Assuntos
Metanol , Espectrometria de Massas por Ionização por Electrospray , Humanos , Metanol/química , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos , Metabolômica/métodos , Solventes/química
5.
Cells ; 12(3)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36766751

RESUMO

Through kidney transplantation, ischemia/reperfusion is known to induce tissular injury due to cell energy shortage, oxidative stress, and endoplasmic reticulum (ER) stress. ER stress stems from an accumulation of unfolded or misfolded proteins in the lumen of ER, resulting in the unfolded protein response (UPR). Adaptive UPR pathways can either restore protein homeostasis or can turn into a stress pathway leading to apoptosis. We have demonstrated that N1-guanyl-1,7-diamineoheptane (GC7), a specific inhibitor of eukaryotic Initiation Factor 5A (eIF5A) hypusination, confers an ischemic protection of kidney cells by tuning their metabolism and decreasing oxidative stress, but its role on ER stress was unknown. To explore this, we used kidney cells pretreated with GC7 and submitted to either warm or cold anoxia. GC7 pretreatment promoted cell survival in an anoxic environment concomitantly to an increase in xbp1 splicing and BiP level while eiF2α phosphorylation and ATF6 nuclear level decreased. These demonstrated a specific modulation of UPR pathways. Interestingly, the pharmacological inhibition of xbp1 splicing reversed the protective effect of GC7 against anoxia. Our results demonstrated that eIF5A hypusination inhibition modulates distinctive UPR pathways, a crucial mechanism for the protection against anoxia/reoxygenation.


Assuntos
Estresse do Retículo Endoplasmático , Isquemia , Rim , Fatores de Iniciação de Peptídeos , Traumatismo por Reperfusão , Humanos , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Hipóxia/genética , Hipóxia/metabolismo , Isquemia/genética , Isquemia/metabolismo , Rim/irrigação sanguínea , Rim/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Resposta a Proteínas não Dobradas , Fator de Iniciação de Tradução Eucariótico 5A
6.
Rev Prat ; 73(9): 964-968, 2023 Nov.
Artigo em Francês | MEDLINE | ID: mdl-38294444

RESUMO

ORGAN CONSERVATION AND TRANSPORTATION MODALITIES. Organ preservation in transplantation is an essential step in the graft journey between the donor and the recipient. The modalities of preservation have become a major element in this process given the evolution of donors in terms of age and associated comorbidities. This situation has led to the evolution of preservation in terms of the composition of solutions and perfusion technologies for all organs. Several concepts have thus emerged with extracellular type composition and the contribution of new molecules such as high molecular weight polyethylene glycols. The evolution also concerns new techniques such as normothermic abdominal circulation and perfusion machines with the use of hypothermia or normothermia and the oxygenation of the medium. Finally, new molecules are available to the teams and other concepts such as perfusion, evaluation and rehabilitation units.


MODALITÉS DE CONSERVATION ET DE TRANSPORT DES ORGANES. La conservation des organes est une étape essentielle dans le parcours du greffon entre le donneur et le receveur. Les modalités de conservation sont devenues un élément majeur dans ce processus compte tenu de l'évolution de l'âge des donneurs et des comorbidités associées. Cette situation a conduit à faire évoluer la conservation en matière de composition des solutions et de technologie de perfusion, et cela pour tous les organes. Plusieurs concepts ont ainsi émergé, avec la composition de type extracellulaire et l'apport de nouvelles molécules comme les polyéthylènes glycols de haut poids moléculaire. Les progrès concernent aussi de nouvelles techniques, comme la circulation régionale normothermique et les machines de perfusion avec l'utilisation de l'hypothermie ou de la normothermie et l'oxygénation du milieu. Enfin, de nouvelles molécules sont à disposition des équipes, et d'autres concepts se développent, comme les unités de perfusion, d'évaluation et de réhabilitation.


Assuntos
Medicina , Humanos , Polietilenoglicóis , Doadores de Tecidos
7.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555508

RESUMO

This Special Issue aims to highlight new avenues in the management of Ischemia/Reperfusion (I/R) injury [...].


Assuntos
Traumatismo por Reperfusão , Humanos , Traumatismo por Reperfusão/prevenção & controle , Isquemia , Reperfusão
8.
Presse Med ; 51(4): 104143, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36216034

RESUMO

The shortage of organs for transplantation has led health professionals to look for alternative sources of donors. One of the avenues concerns donors who have died after circulatory arrest. This is a special situation because the organs from these donors are exposed to warm ischaemia-reperfusion lesions that are unavoidable during the journey of the organs from the donor to the moment of transplantation in the recipient. We will address and discuss the key issues from the perspective of team organization, legislation and its evolution, and the ethical framework. In a second part, the avenues to improve the quality of organs will be presented following the itinerary of the organs between the donor and the recipient. The important moments from the point of view of therapeutic strategy will be put into perspective. New connections between key players involved in pathophysiological mechanisms and implications for innate immunity and injury processes are among the avenues to explore. Technological developments to improve the quality of organs from these recipients will be analyzed, such as perfusion techniques with new modalities of temperatures and oxygenation. New molecules are being investigated for their potential role in protecting these organs and an analysis of potential prospects will be proposed. Finally, the important perspectives that seem to be favored will be discussed in order to reposition the use of deceased donors after circulatory arrest. The use of these organs has become a routine procedure and improving their quality and providing the means for their evaluation is absolutely inevitable.


Assuntos
Parada Cardíaca , Obtenção de Tecidos e Órgãos , Humanos , Doadores de Tecidos , Isquemia Quente , Perfusão , Pulmão , Sobrevivência de Enxerto
9.
Nutrition ; 102: 111738, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35810581

RESUMO

OBJECTIVES: Due to the increased prevalence of obesity in the world, bariatric surgeries are on the rise and necessitate life-long surveillance for deficiencies; hence the recommended vitamin supplementation in these patients. However, inadequate multivitamin supplementation may induce vitamin B6 overload. METHODS: We reviewed all vitamin B6 dosages at the university hospitals of Poitiers, Tours, Bordeaux, and Limoges for the past 5 to 8 years. Analyses were performed by high-performance liquid chromatography, coupled with a fluorescence detector on whole blood samples. RESULTS: During the study period, there was an increase in the number of vitamin B6 dosages. Deficiencies were detected early in Poitiers and Limoges, but were negligible by 2020. However, during the same time period, the number of overdoses increased, reaching close to 40% of dosages at all centers. CONCLUSIONS: Pyridoxin overload is not possible through food-derived pyridoxin; hence, combined with the fact that most vitamin supplements contain vitamin B6, inadequate vitamin supplementation is likely the cause of the observed increase in overdoses. High doses of vitamin B6 can induce polyneuropathy, particularly targeting motor neurons; thus, the increase of overdoses is worrying. In light of the possible risks and the ease with which these could be averted (better formulation of supplements), the precaution principle requires a definition of clear guidelines for vitamin supplementation, especially in patients undergoing bariatric surgery.


Assuntos
Cirurgia Bariátrica , Vitamina B 6 , Cirurgia Bariátrica/efeitos adversos , Suplementos Nutricionais , Humanos , Piridoxina , Vitamina B 12 , Vitaminas
10.
Int J Mol Sci ; 23(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35682996

RESUMO

PURPOSE OF REVIEW: The emerging field of molecular predictive medicine is aiming to change the traditional medical approach in renal transplantation. Many studies have explored potential biomarker molecules with predictive properties in renal transplantation, issued from omics research. Herein, we review the biomarker molecules of four technologies (i.e., Genomics, Transcriptomics, Proteomics, and Metabolomics) associated with favorable kidney transplant outcomes. RECENT FINDINGS: Several panels of molecules have been associated with the outcome that the majority of markers are related to inflammation and immune response; although. other molecular ontologies are also represented, such as proteasome, growth, regeneration, and drug metabolism. Throughout this review, we highlight the lack of properly validated statistical demonstration. Indeed, the most preeminent molecular panels either remain at the limited size study stage or are not confirmed during large-scale studies. At the core of this problem, we identify the methodological shortcomings and propose a comprehensive workflow for discovery and validation of molecular biomarkers that aims to improve the relevance of these tools in the future. SUMMARY: Overall, adopting a patient management through omics approach could bring remarkable improvement to transplantation success. An increased effort and investment between scientists, medical biologists, and clinicians seem to be the path toward a proper solution.


Assuntos
Transplante de Rim , Biomarcadores/metabolismo , Genômica , Humanos , Metabolômica , Proteômica
11.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563381

RESUMO

Organ transplantation remains the treatment of last resort in case of failure of a vital organ (lung, liver, heart, intestine) or non-vital organ (essentially the kidney and pancreas) for which supplementary treatments exist. It remains the best alternative both in terms of quality-of-life and life expectancy for patients and of public health expenditure. Unfortunately, organ shortage remains a widespread issue, as on average only about 25% of patients waiting for an organ are transplanted each year. This situation has led to the consideration of recent donor populations (deceased by brain death with extended criteria or deceased after circulatory arrest). These organs are sensitive to the conditions of conservation during the ischemia phase, which have an impact on the graft's short- and long-term fate. This evolution necessitates a more adapted management of organ donation and the optimization of preservation conditions. In this general review, the different aspects of preservation will be considered. Initially done by hypothermia with the help of specific solutions, preservation is evolving with oxygenated perfusion, in hypothermia or normothermia, aiming at maintaining tissue metabolism. Preservation time is also becoming a unique evaluation window to predict organ quality, allowing repair and/or optimization of recipient choice.


Assuntos
Hipotermia , Obtenção de Tecidos e Órgãos , Humanos , Preservação de Órgãos , Perfusão , Doadores de Tecidos
12.
Transplantation ; 106(6): 1170-1179, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34456268

RESUMO

BACKGROUND: Normothermic machine perfusion (NMP) protocols using blood-based solutions are commonly used in the assessment of kidneys before transplantation. This procedure is, nevertheless, limited by blood availability and warrants the search for alternatives. We compared a blood-based solution with a serum-like preservation solution (Aqix) enriched with colloids with and without red blood cells (RBCs). METHODS: Porcine kidneys retrieved from an abattoir were subjected to 30 min of warm ischemia, followed by 3 h of hypothermic oxygenated machine perfusion at 4 °C. Subsequently, kidneys (n = 6 per group) were evaluated with NMP for 4 h with 5 different solutions: diluted blood, Aqix with BSA ± RBCs, or Aqix with dextran 40 ± RBCs. RESULTS: Throughout NMP, markers of renal function and tubular metabolism were favorable in groups with RBCs. The addition of RBCs resulted in 4- to 6-fold higher oxygen consumption rates. Controls had significantly higher ATP levels post-NMP, exhibited decreased production of oxidative stress markers, and had the highest creatinine clearance. In conclusion, this study shows that the addition of RBCs during NMP reduced renal injury, improved function, and was associated with increased renal metabolism. CONCLUSIONS: Although the RBC-BSA-supplemented Aqix solution was also able to support metabolism and renal function, a blood-based perfusion solution remains superior.


Assuntos
Transplante de Rim , Preservação de Órgãos , Animais , Biomarcadores/metabolismo , Eritrócitos/metabolismo , Rim/metabolismo , Transplante de Rim/efeitos adversos , Transplante de Rim/métodos , Preservação de Órgãos/métodos , Perfusão/efeitos adversos , Perfusão/métodos , Suínos
13.
Small GTPases ; 13(1): 141-161, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34138686

RESUMO

Rho family GTPases are molecular switches best known for their pivotal role in dynamic regulation of the actin cytoskeleton, but also of cellular morphology, motility, adhesion and proliferation. The prototypic members of this family (RhoA, Rac1 and Cdc42) also contribute to the normal kidney function and play important roles in the structure and function of various kidney cells including tubular epithelial cells, mesangial cells and podocytes. The kidney's vital filtration function depends on the structural integrity of the glomerulus, the proximal portion of the nephron. Within the glomerulus, the architecturally actin-based cytoskeleton podocyte forms the final cellular barrier to filtration. The glomerulus appears as a highly dynamic signalling hub that is capable of integrating intracellular cues from its individual structural components. Dynamic regulation of the podocyte cytoskeleton is required for efficient barrier function of the kidney. As master regulators of actin cytoskeletal dynamics, Rho GTPases are therefore of critical importance for sustained kidney barrier function. Dysregulated activities of the Rho GTPases and of their effectors are implicated in the pathogenesis of both hereditary and idiopathic forms of kidney diseases. Diabetic nephropathy is a progressive kidney disease that is caused by injury to kidney glomeruli. High glucose activates RhoA/Rho-kinase in mesangial cells, leading to excessive extracellular matrix production (glomerulosclerosis). This RhoA/Rho-kinase pathway also seems involved in the post-transplant hypertension frequently observed during treatment with calcineurin inhibitors, whereas Rac1 activation was observed in post-transplant ischaemic acute kidney injury.


Assuntos
Podócitos , Proteínas rho de Ligação ao GTP , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Quinases Associadas a rho/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
Artif Organs ; 46(4): 597-605, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34951495

RESUMO

BACKGROUND: M101 is an extracellular hemoglobin isolated from a marine lugworm and is present in the medical device HEMO2 life®. The clinical investigation OXYOP was a paired kidney analysis (n = 60) designed to evaluate the safety and performance of HEMO2 life® used as an additive to preservation solution in renal transplantation. The secondary efficacy endpoints showed less delayed graft function (DGF) and better renal function in the HEMO2 life® group but due to the study design cold ischemia time (CIT) was longer in the contralateral kidneys. METHODS: An additional analysis was conducted including OXYOP patients and patients from the ASTRE database (n = 6584) to verify that the decrease in DGF rates observed in the HEMO2 life® group may not be due solely to the shorter CIT but also to HEMO2 life® performance. Kaplan-Meier estimate curves of cumulative probability of achieving a creatinine level below 250 µmol/L were generated and compared in both groups. A Cox model was used to test the effect of the explanatory variables (use of HEMO2 life® and CIT). Finally, a bootstrap strategy was used to randomly select smaller samples of patients and test them for statistical comparison in the ASTRE database. RESULTS: Kaplan-Meier estimate curves confirmed the existence of a relation between DGF and CIT and Cox analysis showed a benefit in the HEMO2 life® group regardless of the associated CIT. Boostrap analysis confirmed these results. CONCLUSIONS: The present study suggested that the better recovery of renal function observed among kidneys preserved with HEMO2 life® in the OXYOP study is a therapeutic benefit of this breakthrough innovative medical device.


Assuntos
Isquemia Fria , Transplante de Rim , Isquemia Fria/efeitos adversos , Isquemia Fria/métodos , Função Retardada do Enxerto , Sobrevivência de Enxerto , Hemoglobinas , Humanos , Rim/fisiologia , Transplante de Rim/efeitos adversos , Transplante de Rim/métodos , Estudos Prospectivos , Fatores de Risco
15.
Cell Biosci ; 11(1): 219, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952646

RESUMO

Since the demonstration of its involvement in cell proliferation, the eukaryotic initiation factor 5A (eIF5A) has been studied principally in relation to the development and progression of cancers in which the isoform A2 is mainly expressed. However, an increasing number of studies report that the isoform A1, which is ubiquitously expressed in normal cells, exhibits novel molecular features that reveal its new relationships between cellular functions and organ homeostasis. At a first glance, eIF5A can be regarded, among other things, as a factor implicated in the initiation of translation. Nevertheless, at least three specificities: (1) its extreme conservation between species, including plants, throughout evolution, (2) its very special and unique post-translational modification through the activating-hypusination process, and finally (3) its close relationship with the polyamine pathway, suggest that the role of eIF5A in living beings remains to be uncovered. In fact, and beyond its involvement in facilitating the translation of proteins containing polyproline residues, eIF5A is implicated in various physiological processes including ischemic tolerance, metabolic adaptation, aging, development, and immune cell differentiation. These newly discovered physiological properties open up huge opportunities in the clinic for pathologies such as, for example, the ones in which the oxygen supply is disrupted. In this latter case, organ transplantation, myocardial infarction or stroke are concerned, and the current literature defines eIF5A as a new drug target with a high level of potential benefit for patients with these diseases or injuries. Moreover, the recent use of genomic and transcriptomic association along with metadata studies also revealed the implication of eIF5A in genetic diseases. Thus, this review provides an overview of eIF5A from its molecular mechanism of action to its physiological roles and the clinical possibilities that have been recently reported in the literature.

16.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829984

RESUMO

Renal ischaemia reperfusion (I/R) triggers a cascade of events including oxidative stress, apoptotic body and microparticle (MP) formation as well as an acute inflammatory process that may contribute to organ failure. Macrophages are recruited to phagocytose cell debris and MPs. The tyrosine kinase receptor MerTK is a major player in the phagocytosis process. Experimental models of renal I/R events are of major importance for identifying I/R key players and for elaborating novel therapeutical approaches. A major aim of our study was to investigate possible involvement of MerTK in renal I/R. We performed our study on both natural mutant rats for MerTK (referred to as RCS) and on wild type rats referred to as WT. I/R was established by of bilateral clamping of the renal pedicles for 30' followed by three days of reperfusion. Plasma samples were analysed for creatinine, aspartate aminotransferase (ASAT), lactate dehydrogenase (LDH), kidney injury molecule -1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels and for MPs. Kidney tissue damage and CD68-positive cell requirement were analysed by histochemistry. monocyte chemoattractant protein-1 (MCP-1), myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), and histone 3A (H3A) levels in kidney tissue lysates were analysed by western blotting. The phagocytic activity of blood-isolated monocytes collected from RCS or WT towards annexin-V positive bodies derived from cultured renal cell was assessed by fluorescence-activated single cell sorting (FACS) and confocal microscopy analyses. The renal I/R model for RCS rat described for the first time here paves the way for further investigations of MerTK-dependent events in renal tissue injury and repair mechanisms.


Assuntos
Injúria Renal Aguda/genética , Rim/metabolismo , Traumatismo por Reperfusão/genética , c-Mer Tirosina Quinase/genética , Injúria Renal Aguda/sangue , Injúria Renal Aguda/patologia , Animais , Aspartato Aminotransferases/sangue , Moléculas de Adesão Celular/sangue , Quimiocina CCL2/sangue , Creatinina/sangue , Humanos , Rim/patologia , L-Lactato Desidrogenase/sangue , Lipocalina-2/sangue , Macrófagos/metabolismo , Macrófagos/patologia , Óxido Nítrico/genética , Óxido Nítrico Sintase Tipo II/sangue , Peroxidase/sangue , Fagocitose/genética , Ratos , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/patologia
17.
Front Immunol ; 12: 744927, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621275

RESUMO

Ischemia and reperfusion injury is an early inflammatory process during liver transplantation that impacts on graft function and clinical outcomes. Interleukin (IL)-33 is a danger-associated molecular pattern involved in kidney ischemia/reperfusion injury and several liver diseases. The aims were to assess whether IL-33 was released as an alarmin responsible for ischemia/reperfusion injury in a mouse model of warm hepatic ischemia, and whether this hypothesis could also apply in the setting of human liver transplantation. First, a model of warm hepatic ischemia/reperfusion was used in wild-type and IL-33-deficient mice. Severity of ischemia/reperfusion injury was assessed with ALT and histological analysis. Then, serum IL-33 was measured in a pilot cohort of 40 liver transplant patients. Hemodynamic postreperfusion syndrome, graft dysfunction (assessed by model for early allograft scoring >6), renal failure, and tissue lesions on time-zero biopsies were assessed. In the mouse model, IL-33 was constitutively expressed in the nucleus of endothelial cells, immediately released in response to hepatic pedicle clamping without neosynthesis, and participated in the recruitment of neutrophils and tissue injury on site. The kinetics of IL-33 in liver transplant patients strikingly matched the ones in the animal model, as attested by serum levels reaching a peak immediately after reperfusion, which correlated to clinical outcomes including postreperfusion syndrome, posttransplant renal failure, graft dysfunction, and histological lesions of ischemia/reperfusion injury. IL-33 was an independent factor of graft dysfunction with a cutoff of IL-33 at 73 pg/ml after reperfusion (73% sensitivity, area under the curve of 0.76). Taken together, these findings establish the immediate implication of IL-33 acting as an alarmin in liver I/R injury and provide evidence of its close association with cardinal features of early liver injury-associated disorders in LT patients.


Assuntos
Alarminas/imunologia , Interleucina-33/imunologia , Transplante de Fígado , Fígado/patologia , Traumatismo por Reperfusão/patologia , Alarminas/metabolismo , Animais , Estudos de Coortes , Humanos , Interleucina-33/metabolismo , Fígado/imunologia , Fígado/metabolismo , Camundongos , Projetos Piloto , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo
18.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502149

RESUMO

Chronic kidney disease (CKD) is a worldwide public health issue affecting 14% of the general population. However, research focusing on CKD mechanisms/treatment is limited because of a lack of animal models recapitulating the disease physiopathology, including its complications. We analyzed the effects of a three-week diet rich in sodium oxalate (OXA diet) on rats and showed that, compared to controls, rats developed a stable CKD with a 60% reduction in glomerular filtration rate, elevated blood urea levels and proteinuria. Histological analyses revealed massive cortical disorganization, tubular atrophy and fibrosis. Males and females were sensitive to the OXA diet, but decreasing the diet period to one week led to GFR significance but not stable diminution. Rats treated with the OXA diet also displayed classical CKD complications such as elevated blood pressure and reduced hematocrit. Functional cardiac analyses revealed that the OXA diet triggered significant cardiac dysfunction. Altogether, our results showed the feasibility of using a convenient and non-invasive strategy to induce CKD and its classical systemic complications in rats. This model, which avoids kidney mass loss or acute toxicity, has strong potential for research into CKD mechanisms and novel therapies, which could protect and postpone the use of dialysis or transplantation.


Assuntos
Dieta/efeitos adversos , Cardiopatias/etiologia , Hiperoxalúria/etiologia , Ácido Oxálico/toxicidade , Insuficiência Renal Crônica/etiologia , Animais , Pressão Sanguínea , Feminino , Taxa de Filtração Glomerular , Frequência Cardíaca , Hematócrito , Masculino , Ácido Oxálico/administração & dosagem , Ácido Oxálico/farmacocinética , Ratos , Ratos Wistar
19.
Free Radic Biol Med ; 169: 258-270, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33892115

RESUMO

Disorders characterized by ischemia/reperfusion (I/R) are the most common causes of debilitating diseases and death in stroke, cardiovascular ischemia, acute kidney injury or organ transplantation. In the latter example the I/R step defines both the amplitude of the damages to the graft and the functional recovery outcome. During transplantation the kidney is subjected to blood flow arrest followed by a sudden increase in oxygen supply at the time of reperfusion. This essential clinical protocol causes massive oxidative stress which is at the basis of cell death and tissue damage. The involvement of both reactive oxygen species (ROS) and nitric oxides (NO) has been shown to be a major cause of these cellular damages. In fact, in non-physiological situations, these species escape endogenous antioxidant control and dangerously accumulate in cells. In recent years, the objective has been to find clinical and pharmacological treatments to reduce or prevent the appearance of oxidative stress in ischemic pathologies. This is very relevant because, due to the increasing success of organ transplantation, clinicians are required to use limit organs, the preservation of which against oxidative stress is crucial for a better outcome. This review highlights the key actors in oxidative stress which could represent new pharmacological targets.


Assuntos
Transplante de Rim , Traumatismo por Reperfusão , Antioxidantes/uso terapêutico , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio
20.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673423

RESUMO

Ischemia reperfusion injury is a complex process consisting of a seemingly chaotic but actually organized and compartmentalized shutdown of cell function, of which oxidative stress is a key component. Studying oxidative stress, which results in an imbalance between reactive oxygen species (ROS) production and antioxidant defense activity, is a multi-faceted issue, particularly considering the double function of ROS, assuming roles as physiological intracellular signals and as mediators of cellular component damage. Herein, we propose a comprehensive overview of the tools available to explore oxidative stress, particularly in the study of ischemia reperfusion. Applying chemistry as well as biology, we present the different models currently developed to study oxidative stress, spanning the vitro and the silico, discussing the advantages and the drawbacks of each set-up, including the issues relating to the use of in vitro hypoxia as a surrogate for ischemia. Having identified the limitations of historical models, we shall study new paradigms, including the use of stem cell-derived organoids, as a bridge between the in vitro and the in vivo comprising 3D intercellular interactions in vivo and versatile pathway investigations in vitro. We shall conclude this review by distancing ourselves from "wet" biology and reviewing the in silico, computer-based, mathematical modeling, and numerical simulation options: (a) molecular modeling with quantum chemistry and molecular dynamic algorithms, which facilitates the study of molecule-to-molecule interactions, and the integration of a compound in a dynamic environment (the plasma membrane...); (b) integrative systemic models, which can include many facets of complex mechanisms such as oxidative stress or ischemia reperfusion and help to formulate integrated predictions and to enhance understanding of dynamic interaction between pathways.


Assuntos
Modelos Animais de Doenças , Estresse Oxidativo , Traumatismo por Reperfusão/metabolismo , Animais , Linhagem Celular , Humanos , Modelos Moleculares , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA