Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Prog Neurobiol ; 236: 102603, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604582

RESUMO

The STRAT-PARK initiative aims to provide a platform for stratifying Parkinson's disease (PD) into biological subtypes, using a bottom-up, multidisciplinary biomarker-based and data-driven approach. PD is a heterogeneous entity, exhibiting high interindividual clinicopathological variability. This diversity suggests that PD may encompass multiple distinct biological entities, each driven by different molecular mechanisms. Molecular stratification and identification of disease subtypes is therefore a key priority for understanding and treating PD. STRAT-PARK is a multi-center longitudinal cohort aiming to recruit a total of 2000 individuals with PD and neurologically healthy controls from Norway and Canada, for the purpose of identifying molecular disease subtypes. Clinical assessment is performed annually, whereas biosampling, imaging, and digital and neurophysiological phenotyping occur every second year. The unique feature of STRAT-PARK is the diversity of collected biological material, including muscle biopsies and platelets, tissues particularly useful for mitochondrial biomarker research. Recruitment rate is ∼150 participants per year. By March 2023, 252 participants were included, comprising 204 cases and 48 controls. STRAT-PARK is a powerful stratification initiative anticipated to become a global research resource, contributing to personalized care in PD.


Assuntos
Doença de Parkinson , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia , Humanos , Noruega , Estudos de Coortes , Medicina de Precisão/métodos , Canadá , Estudos Longitudinais , Biomarcadores , Idoso , Masculino , Pessoa de Meia-Idade , Feminino
2.
Age Ageing ; 53(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342753

RESUMO

BACKGROUND: In-hospital delirium is associated with adverse outcomes and is underdiagnosed, limiting research and clinical follow-up. OBJECTIVE: To compare the incidence of in-hospital delirium determined by chart-based review of electronic medical records (D-CBR) with delirium discharge diagnoses (D-DD). Furthermore, to identify differences in symptoms, treatments and delirium triggers between D-CBR and D-DD. METHOD: The community-based cohort included 2,115 participants in the Hordaland Health Study born between 1925 and 1927. Between 2018 and 2022, we retrospectively reviewed hospital electronic medical records from baseline (1997-99) until death prior to 2023. D-DD and D-CBR were validated using The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, criteria for delirium. RESULTS: Of the 2,115 participants, 638 had in-hospital delirium. The incidence rate (IR) of D-CBR was 29.8 [95% confidence interval 28, 32] per 1,000 person-years, whereas the IR by D-DD was 3.4 [2.8, 4.2]. The IR ratio was 9.14 (P < 0.001). Patients who received pharmacological treatment for delirium (n = 121, odds ratio (OR) 3.4, [2.1, 5.4], P < 0.001), who were affected by acute memory impairment (n = 149, OR 2.8, [1.8, 4.5], P < 0.001), or change in perception (n = 137, OR 2.9, [1.8, 4.6] P < 0.001) had higher odds for D-DD. In contrast, post-operative cases (OR 0.2, [0.1, 0.4], P < 0.001) had lower odds for D-DD. CONCLUSION: Underdiagnosis of in-hospital delirium was a major issue in our study, especially in less severe delirium cases. Our findings emphasise the need for integrating systematic delirium diagnostics and documentation into hospital admission and discharge routines.


Assuntos
Delírio , Humanos , Delírio/diagnóstico , Delírio/epidemiologia , Delírio/terapia , Estudos Retrospectivos , Fatores de Risco , Hospitais , Prontuários Médicos
3.
Nat Commun ; 14(1): 7793, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016950

RESUMO

Nicotinamide adenine dinucleotide (NAD) replenishment therapy using nicotinamide riboside (NR) shows promise for Parkinson's disease (PD) and other neurodegenerative disorders. However, the optimal dose of NR remains unknown, and doses exceeding 2000 mg daily have not been tested in humans. To evaluate the safety of high-dose NR therapy, we conducted a single-center, randomized, placebo-controlled, double-blind, phase I trial on 20 individuals with PD, randomized 1:1 on NR 1500 mg twice daily (n = 10) or placebo (n = 10) for four weeks. The trial was conducted at the Department of Neurology, Haukeland University Hospital, Bergen, Norway. The primary outcome was safety, defined as the frequency of moderate and severe adverse events. Secondary outcomes were tolerability defined as frequency of mild adverse events, change in the whole blood and urine NAD metabolome, and change in the clinical severity of PD, measured by MDS-UPDRS. All 20 participants completed the trial. The trial met all prespecified outcomes. NR therapy was well tolerated with no moderate or severe adverse events, and no significant difference in mild adverse events. NR therapy was associated with clinical improvement of total MDS-UPDRS scores. However, this change was also associated with a shorter interval since the last levodopa dose. NR greatly augmented the blood NAD metabolome with up to 5-fold increase in blood NAD+ levels. While NR-recipients exhibited a slight initial rise in serum homocysteine levels, the integrity of the methyl donor pool remained intact. Our results support extending the dose range of NR in phase II clinical trials to 3000 mg per day, with appropriate safety monitoring. Clinicaltrials.gov identifier: NCT05344404.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , NAD , Niacinamida , Compostos de Piridínio/efeitos adversos , Método Duplo-Cego
4.
iScience ; 26(3): 106278, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36936793

RESUMO

Replenishing nicotinamide adenine dinucleotide (NAD) via supplementation of nicotinamide riboside (NR) has been shown to confer neuroprotective effects in models of aging and neurodegenerative diseases, including Parkinson's disease (PD). Although generally considered safe, concerns have been raised that NR supplementation could impact methylation dependent reactions, including DNA methylation, because of increased production and methylation dependent breakdown of nicotinamide (NAM). We investigated the effect of NR supplementation on DNA methylation in a double blinded, placebo-controlled trial of 29 human subjects with PD, in blood cells and muscle tissue. Our results show that NR had no impact on DNA methylation homeostasis, including individuals with common pathogenic mutations in the MTHFR gene known to affect one-carbon metabolism. Pathway and methylation variance analyses indicate that there might be minor regulatory responses to NR. We conclude that short-term therapy with high-dose NR for up to 30 days has no deleterious impact on methylation homeostasis.

5.
Cell Metab ; 34(3): 396-407.e6, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235774

RESUMO

We conducted a double-blinded phase I clinical trial to establish whether nicotinamide adenine dinucleotide (NAD) replenishment therapy, via oral intake of nicotinamide riboside (NR), is safe, augments cerebral NAD levels, and impacts cerebral metabolism in Parkinson's disease (PD). Thirty newly diagnosed, treatment-naive patients received 1,000 mg NR or placebo for 30 days. NR treatment was well tolerated and led to a significant, but variable, increase in cerebral NAD levels-measured by 31phosphorous magnetic resonance spectroscopy-and related metabolites in the cerebrospinal fluid. NR recipients showing increased brain NAD levels exhibited altered cerebral metabolism, measured by 18fluoro-deoxyglucose positron emission tomography, and this was associated with mild clinical improvement. NR augmented the NAD metabolome and induced transcriptional upregulation of processes related to mitochondrial, lysosomal, and proteasomal function in blood cells and/or skeletal muscle. Furthermore, NR decreased the levels of inflammatory cytokines in serum and cerebrospinal fluid. Our findings nominate NR as a potential neuroprotective therapy for PD, warranting further investigation in larger trials.


Assuntos
NAD , Doença de Parkinson , Suplementos Nutricionais , Humanos , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Compostos de Piridínio/uso terapêutico
6.
NPJ Parkinsons Dis ; 8(1): 19, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236852

RESUMO

Epidemiological studies of Parkinson's disease (PD) show variable and partially conflicting findings with regard to incidence, prevalence, and mortality. These differences are commonly attributed to technical and methodological factors, including small sample sizes, differences in diagnostic practices, and population heterogeneity. We leveraged the Norwegian Prescription Database, a population-based registry of drug prescriptions dispensed from Norwegian pharmacies to assess the incidence, prevalence, and mortality of PD in Norway. The diagnosis of PD was defined based on the prescription of dopaminergic drugs for the indication of PD over a continuous time. During 2004-2017, 12,229 males and 9831 females met our definition for PD diagnosis. PD prevalence increased over the observation period, with larger changes observed in the older age groups. Incidence and prevalence of PD increased with age, peaking at 85 years. The male/female prevalence ratio was 1.5 across all ages, whereas the incidence ratio increased with age, from 1.4 in those 60 years, to 2.03 among those >90 years. While PD mortality was generally higher than that of the general population, mortality odds ratios decreased with age, approaching 1.0 among individuals >90 years old. When adjusted for the sex-specific mortality of the general population, the mortality among females with PD was equal to or higher than the mortality among males with PD. Our findings demonstrate that the epidemiological features of PD, including sex-differences, are age and time-period dependent and indicate that sex differences in PD mortality are unlikely to stem from disease-specific negative impact of survival in males.

7.
PLoS One ; 16(9): e0256602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34492069

RESUMO

OBJECTIVE: Whether use of nonsteroidal anti-inflammatory drugs (NSAIDs) reduce the risk of incident Parkinson's disease (PD) remains unresolved. Here, we employed the Norwegian Prescription Database to examine whether NSAID use is associated with a lower incidence of PD. METHODS: We compared the incidence of PD among users of NSAIDs in a population-based retrospective study using the Norwegian Prescription Database from 2004 to 2017. In total 7580 PD patients were identified using dopaminergic therapy over time as proxy for PD diagnosis. Analyses were performed with minimum 90 and 365 defined daily dose (DDD) NSAID exposure, respectively. Time-dependent Cox regression model and a binary logistic regression analysis with a 5-year lag until PD diagnosis were performed for all NSAIDs. RESULTS: There was overall no decrease in incidence of PD among NSAID users compared to controls. Using a minimum of 90 or 365 DDD threshold of exposure produced similar results. Analysis of individual NSAIDs did not show difference in PD incidence compared to controls Age-specific incidence rates of PD were comparable to reported age-specific incidence rates in previous studies. INTERPRETATION: Our findings provide no evidence that cumulative high exposure to NSAIDs affects the risk of developing PD.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Inflamação/tratamento farmacológico , Doença de Parkinson/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Anti-Inflamatórios não Esteroides/efeitos adversos , Bases de Dados Factuais , Feminino , Humanos , Inflamação/complicações , Inflamação/epidemiologia , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Noruega/epidemiologia , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Prescrições , Modelos de Riscos Proporcionais , Fatores de Risco
8.
Mol Neurodegener ; 16(1): 31, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33947435

RESUMO

BACKGROUND: Parkinson's disease (PD) is a complex, age-related neurodegenerative disorder of largely unknown etiology. PD is strongly associated with mitochondrial respiratory dysfunction, which can lead to epigenetic dysregulation and specifically altered histone acetylation. Nevertheless, and despite the emerging role of epigenetics in age-related brain disorders, the question of whether aberrant histone acetylation is involved in PD remains unresolved. METHODS: We studied fresh-frozen brain tissue from two independent cohorts of individuals with idiopathic PD (n = 28) and neurologically healthy controls (n = 21). We performed comprehensive immunoblotting to identify histone sites with altered acetylation levels in PD, followed by chromatin immunoprecipitation sequencing (ChIP-seq). RNA sequencing data from the same individuals was used to assess the impact of altered histone acetylation on gene expression. RESULTS: Immunoblotting analyses revealed increased acetylation at several histone sites in PD, with the most prominent change observed for H3K27, a marker of active promoters and enhancers. ChIP-seq analysis further indicated that H3K27 hyperacetylation in the PD brain is a genome-wide phenomenon with a strong predilection for genes implicated in the disease, including SNCA, PARK7, PRKN and MAPT. Integration of the ChIP-seq with transcriptomic data from the same individuals revealed that the correlation between promoter H3K27 acetylation and gene expression is attenuated in PD patients, suggesting that H3K27 acetylation may be decoupled from transcription in the PD brain. Strikingly, this decoupling was most pronounced among nuclear-encoded mitochondrial genes, corroborating the notion that impaired crosstalk between the nucleus and mitochondria is involved in the pathogenesis of PD. Our findings independently replicated in the two cohorts. CONCLUSIONS: Our findings strongly suggest that aberrant histone acetylation and altered transcriptional regulation are involved in the pathophysiology of PD. We demonstrate that PD-associated genes are particularly prone to epigenetic dysregulation and identify novel epigenetic signatures associated with the disease.


Assuntos
Química Encefálica , Código das Histonas , Histonas/metabolismo , Doença de Parkinson/genética , Processamento de Proteína Pós-Traducional , Transcrição Gênica , Acetilação , Antiparkinsonianos/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma Humano , Humanos , Neurônios/efeitos dos fármacos , Doença de Parkinson/metabolismo , Córtex Pré-Frontal/química , Sirtuína 1/análise , Sirtuína 2/análise , Sirtuína 3/análise
9.
PLoS One ; 15(10): e0239824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002040

RESUMO

Parkinson disease (PD) is a complex neurodegenerative disorder influenced by both environmental and genetic factors. While genome wide association studies have identified several susceptibility loci, many causal variants and genes underlying these associations remain undetermined. Identifying these is essential in order to gain mechanistic insight and identify biological pathways that may be targeted therapeutically. We hypothesized that gene-based enrichment of rare mutations is likely to be found within susceptibility loci for PD and may help identify causal genes. Whole-exome sequencing data from two independent cohorts were analyzed in tandem and by meta-analysis and a third cohort genotyped using the NeuroX-array was used for replication analysis. We employed collapsing methods (burden and the sequence kernel association test) to detect gene-based enrichment of rare, protein-altering variation within established PD susceptibility loci. Our analyses showed trends for three genes (GALC, PARP9 and SEC23IP), but none of these survived multiple testing correction. Our findings provide no evidence of rare mutation enrichment in genes within PD-associated loci, in our datasets. While not excluding that rare mutations in these genes may influence the risk of idiopathic PD, our results suggest that, if such effects exist, much larger sequencing datasets will be required for their detection.


Assuntos
Exoma , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Galactosilceramidase/genética , Predisposição Genética para Doença , Proteínas de Neoplasias/genética , Poli(ADP-Ribose) Polimerases/genética , Proteínas de Ligação a RNA/genética
10.
Acta Neuropathol Commun ; 8(1): 55, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317022

RESUMO

The etiology of Parkinson's disease is largely unknown. Genome-wide transcriptomic studies in bulk brain tissue have identified several molecular signatures associated with the disease. While these studies have the potential to shed light into the pathogenesis of Parkinson's disease, they are also limited by two major confounders: RNA post-mortem degradation and heterogeneous cell type composition of bulk tissue samples. We performed RNA sequencing following ribosomal RNA depletion in the prefrontal cortex of 49 individuals from two independent case-control cohorts. Using cell type specific markers, we estimated the cell type composition for each sample and included this in our analysis models to compensate for the variation in cell type proportions. Ribosomal RNA depletion followed by capture by random primers resulted in substantially more even transcript coverage, compared to poly(A) capture, in post-mortem tissue. Moreover, we show that cell type composition is a major confounder of differential gene expression analysis in the Parkinson's disease brain. Accounting for cell type proportions attenuated numerous transcriptomic signatures that have been previously associated with Parkinson's disease, including vesicle trafficking, synaptic transmission, immune and mitochondrial function. Conversely, pathways related to endoplasmic reticulum, lipid oxidation and unfolded protein response were strengthened and surface as the top differential gene expression signatures in the Parkinson's disease prefrontal cortex. Our results indicate that differential gene expression signatures in Parkinson's disease bulk brain tissue are significantly confounded by underlying differences in cell type composition. Modeling cell type heterogeneity is crucial in order to unveil transcriptomic signatures that represent regulatory changes in the Parkinson's disease brain and are, therefore, more likely to be associated with underlying disease mechanisms.


Assuntos
Encéfalo/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Análise de Sequência de RNA/métodos , Transcriptoma , Humanos
11.
Mov Disord ; 33(10): 1591-1600, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30256453

RESUMO

BACKGROUND: Mitochondrial dysfunction plays a key role in PD, but the underlying molecular mechanisms remain unresolved. We hypothesized that the disruption of mitochondrial function in PD is primed by rare, protein-altering variation in nuclear genes controlling mitochondrial structure and function. OBJECTIVE: The objective of this study was to assess whether genetic variation in genes associated with mitochondrial function influences the risk of idiopathic PD. METHODS: We employed whole-exome sequencing data from 2 independent cohorts of clinically validated idiopathic PD and controls, the Norwegian ParkWest cohort (n = 411) and the North American Parkinson's Progression Markers Initiative (n = 640). We applied burden-based and variance-based collapsing methods to assess the enrichment of rare, nonsynonymous, and damaging genetic variants on genes, exome-wide, and on a comprehensive set of mitochondrial pathways, defined as groups of genes controlling specific mitochondrial functions. RESULTS: Using the sequence kernel association test, we detected a significant polygenic enrichment of rare, nonsynonymous variants in the gene-set encoding the pathway of mitochondrial DNA maintenance. Notably, this was the strongest association in both cohorts and survived multiple testing correction (ParkWest P = 6.3 × 10-3 , Parkinson's Progression Markers Initiative P = 6.9 × 10-5 , metaanalysis P = 3.2 × 10-6 ). CONCLUSIONS: Our results show that the enrichment of rare inherited variation in the pathway controlling mitochondrial DNA replication and repair influences the risk of PD. We propose that this polygenic enrichment contributes to the impairment of mitochondrial DNA homeostasis, thought to be a key mechanism in the pathogenesis of PD, and explains part of the disorder's "missing heritability." © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
DNA Mitocondrial/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Mitocôndrias/genética , Doença de Parkinson/genética , Transdução de Sinais/genética , Estudos de Coortes , Feminino , Estudos de Associação Genética , Humanos , Masculino , Metanálise como Assunto , América do Norte , Noruega
13.
Acta Neuropathol ; 135(3): 409-425, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29270838

RESUMO

Mitochondrial complex I deficiency occurs in the substantia nigra of individuals with Parkinson's disease. It is generally believed that this phenomenon is caused by accumulating mitochondrial DNA damage in neurons and that it contributes to the process of neurodegeneration. We hypothesized that if these theories are correct, complex I deficiency should extend beyond the substantia nigra to other affected brain regions in Parkinson's disease and correlate tightly with neuronal mitochondrial DNA damage. To test our hypothesis, we employed a combination of semiquantitative immunohistochemical analyses, Western blot and activity measurements, to assess complex I quantity and function in multiple brain regions from an extensively characterized population-based cohort of idiopathic Parkinson's disease (n = 18) and gender and age matched healthy controls (n = 11). Mitochondrial DNA was assessed in single neurons from the same areas by real-time PCR. Immunohistochemistry showed that neuronal complex I deficiency occurs throughout the Parkinson's disease brain, including areas spared by the neurodegenerative process such as the cerebellum. Activity measurements in brain homogenate confirmed a moderate decrease of complex I function, whereas Western blot was less sensitive, detecting only a mild reduction, which did not reach statistical significance at the group level. With the exception of the substantia nigra, neuronal complex I loss showed no correlation with the load of somatic mitochondrial DNA damage. Interestingly, α-synuclein aggregation was less common in complex I deficient neurons in the substantia nigra. We show that neuronal complex I deficiency is a widespread phenomenon in the Parkinson's disease brain which, contrary to mainstream theory, does not follow the anatomical distribution of neurodegeneration and is not associated with the neuronal load of mitochondrial DNA mutation. Our findings suggest that complex I deficiency in Parkinson's disease can occur independently of mitochondrial DNA damage and may not have a pathogenic role in the neurodegenerative process.


Assuntos
Encéfalo/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Dano ao DNA , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/patologia , Doença de Parkinson/patologia , Estudos Prospectivos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , alfa-Sinucleína/metabolismo
14.
Neurobiol Aging ; 63: 120-127, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29257976

RESUMO

Mitochondrial DNA (mtDNA) deletions accumulate with age in postmitotic cells and are associated with aging and neurodegenerative disorders such as Parkinson's disease. Although the exact mechanisms by which deletions form remain elusive, the dominant theory is that they arise spontaneously at microhomologous sites and undergo clonal expansion. We characterize mtDNA deletions at unprecedented resolution in individual substantia nigra neurons from individuals with Parkinson's disease, using ultradeep sequencing. We show that the number of deleted mtDNA species per neuron is substantially higher than previously reported. Moreover, each deleted mtDNA species shows significant differences in sequence composition compared with the remaining mtDNA population, which is highly consistent with independent segregation and clonal expansion. Deletion breakpoints occur consistently in regions of sequence homology, which may be direct or interrupted stretches of tandem repeats. While our results support a crucial role for misannealing in deletion generation, we find no overrepresentation of the 3'-repeat sequence, an observation that is difficult to reconcile with the current view of replication errors as the source of mtDNA deletions.


Assuntos
DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doença de Parkinson/genética , Deleção de Sequência/genética , Envelhecimento/genética , Sequência de Bases/genética , Neurônios Dopaminérgicos/metabolismo , Humanos , Homologia de Sequência do Ácido Nucleico , Substância Negra/metabolismo , Sequências de Repetição em Tandem/genética
15.
Mov Disord ; 32(11): 1594-1599, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28861893

RESUMO

BACKGROUND: Whether antidiabetic glitazone drugs protect against Parkinson's disease remains controversial. Although a single clinical trial showed no evidence of disease modulation, retrospective studies suggest that a disease-preventing effect may be plausible. The objective of this study was to examine if the use of glitazone drugs is associated with a lower incidence of PD among diabetic patients. METHODS: We compared the incidence of PD between individuals with diabetes who used glitazones, with or without metformin, and individuals using only metformin in the Norwegian Prescription Database. This database contains all prescription drugs dispensed for the entire Norwegian population. We identified 94,349 metformin users and 8396 glitazone users during a 10-year period and compared the incidence of PD in the 2 groups using Cox regression survival analysis, with glitazone exposure as a time-dependent covariate. RESULTS: Glitazone use was associated with a significantly lower incidence of PD compared with metformin-only use (hazard ratio, 0.72; 95% confidence interval, 0.55-0.94; P = 0.01). CONCLUSIONS: The use of glitazones is associated with a decreased risk of incident PD in populations with diabetes. Further studies are warranted to confirm and understand the role of glitazones in neurodegeneration. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Doença de Parkinson/prevenção & controle , Tiazolidinedionas/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bases de Dados Factuais/estatística & dados numéricos , Diabetes Mellitus Tipo 2/epidemiologia , Prescrições de Medicamentos/estatística & dados numéricos , Quimioterapia Combinada , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Noruega/epidemiologia , Doença de Parkinson/epidemiologia
16.
Biosci Rep ; 37(2)2017 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-28396517

RESUMO

Spinocerebellar ataxia, autosomal recessive 16 (SCAR16) is caused by biallelic mutations in the STIP1 homology and U-box containing protein 1 (STUB1) gene encoding the ubiquitin E3 ligase and dimeric co-chaperone C-terminus of Hsc70-interacting protein (CHIP). It has been proposed that the disease mechanism is related to CHIP's impaired E3 ubiquitin ligase properties and/or interaction with its chaperones. However, there is limited knowledge on how these mutations affect the stability, folding, and protein structure of CHIP itself. To gain further insight, six previously reported pathogenic STUB1 variants (E28K, N65S, K145Q, M211I, S236T, and T246M) were expressed as recombinant proteins and studied using limited proteolysis, size-exclusion chromatography (SEC), and circular dichroism (CD). Our results reveal that N65S shows increased CHIP dimerization, higher levels of α-helical content, and decreased degradation rate compared with wild-type (WT) CHIP. By contrast, T246M demonstrates a strong tendency for aggregation, a more flexible protein structure, decreased levels of α-helical structures, and increased degradation rate compared with WT CHIP. E28K, K145Q, M211I, and S236T also show defects on structural properties compared with WT CHIP, although less profound than what observed for N65S and T246M. In conclusion, our results illustrate that some STUB1 mutations known to cause recessive SCAR16 have a profound impact on the protein structure, stability, and ability of CHIP to dimerize in vitro. These results add to the growing understanding on the mechanisms behind the disorder.


Assuntos
Mutação , Estabilidade Proteica , Desdobramento de Proteína , Ataxias Espinocerebelares/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Humanos , Agregados Proteicos , Conformação Proteica , Multimerização Proteica , Proteólise , Ataxias Espinocerebelares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
17.
PLoS One ; 12(1): e0169309, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28052128

RESUMO

BACKGROUND: With the advent new sequencing technologies, we now have the tools to understand the phenotypic diversity and the common occurrence of phenocopies. We used these techniques to investigate two Norwegian families with an autosomal recessive cerebellar ataxia with cataracts and mental retardation. METHODS AND RESULTS: Single nucleotide polymorphism (SNP) chip analysis followed by Exome sequencing identified a 2 bp homozygous deletion in GBA2 in both families, c.1528_1529del [p.Met510Valfs*17]. Furthermore, we report the biochemical characterization of GBA2 in these patients. Our studies show that a reduced activity of GBA2 is sufficient to elevate the levels of glucosylceramide to similar levels as seen in Gaucher disease. Furthermore, leucocytes seem to be the proper enzyme source for in vitro analysis of GBA2 activity. CONCLUSIONS: We report GBA2 mutations causing a Marinesco-Sjögren-like syndrome in two Norwegian families. One of the families was originally diagnosed with Marinesco-Sjögren syndrome based on an autosomal recessive cerebellar ataxia with cataracts and mental retardation. Our findings highlight the phenotypic variability associated with GBA2 mutations, and suggest that patients with Marinesco-Sjögren-like syndromes should be tested for mutations in this gene.


Assuntos
Mutação/genética , Degenerações Espinocerebelares/genética , beta-Glucosidase/genética , Idoso , Criança , Pré-Escolar , Feminino , Glucosilceramidase , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
19.
Nat Commun ; 7: 13548, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874000

RESUMO

Increased somatic mitochondrial DNA (mtDNA) mutagenesis causes premature aging in mice, and mtDNA damage accumulates in the human brain with aging and neurodegenerative disorders such as Parkinson disease (PD). Here, we study the complete spectrum of mtDNA changes, including deletions, copy-number variation and point mutations, in single neurons from the dopaminergic substantia nigra and other brain areas of individuals with Parkinson disease and neurologically healthy controls. We show that in dopaminergic substantia nigra neurons of healthy individuals, mtDNA copy number increases with age, maintaining the pool of wild-type mtDNA population in spite of accumulating deletions. This upregulation fails to occur in individuals with Parkinson disease, however, resulting in depletion of the wild-type mtDNA population. By contrast, neuronal mtDNA point mutational load is not increased in Parkinson disease. Our findings suggest that dysregulation of mtDNA homeostasis is a key process in the pathogenesis of neuronal loss in Parkinson disease.


Assuntos
DNA Mitocondrial/genética , Regulação da Expressão Gênica/fisiologia , Homeostase , Doença de Parkinson/patologia , Sequência de Bases , Estudos de Casos e Controles , Variações do Número de Cópias de DNA , Deleção de Genes , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
20.
Mitochondrion ; 28: 33-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26979109

RESUMO

Mitochondrial involvement in the pathogenesis of Parkinson's disease has been suggested by multiple studies, but the mechanisms involved remain unresolved. Here, we sought to identify which mitochondrial defects are associated with degeneration of the nigrostriatal system. Nigrostriatal integrity was assessed in vivo by dopamine transporter (DAT) imaging in twenty-one patients with mitochondrial disorders of different molecular aetiology including: maternally inherited mitochondrial DNA (mtDNA) point mutations, primary single mtDNA deletions, nuclear-encoded disorders of mtDNA replication and maintenance due to mutations in POLG or C10orf2 (Twinkle), and mutations in other nuclear mitochondrial genes including the mitochondrial aspartyl-tRNA synthetase (DARS2) and ADCK3 genes. Patients with mitochondrial disease were compared with twenty patients with Parkinson's disease and eighteen controls. Nigrostriatal degeneration occurred exclusively in patients with defective mtDNA replication and maintenance. In these patients, nigrostriatal degeneration was progressive and at least as severe as in patients with advanced Parkinson's disease. None of the patients with other mitochondrial defects showed evidence of nigral involvement. Our findings demonstrate that dopaminergic neurons of the substantia nigra are specifically vulnerable to defective mtDNA replication/repair or quality control and not to primary point mutations of mtDNA. These results support the hypothesis that accumulating somatic mtDNA damage plays an important role in neurodegeneration.


Assuntos
Replicação do DNA , DNA Mitocondrial/metabolismo , Homeostase , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Substância Negra/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Neurônios Dopaminérgicos/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA