Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 5(11): e360, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34877448

RESUMO

Although asymmetric deposition of the plant extracellular matrix is critical for the normal functioning of many cell types, the molecular mechanisms establishing this asymmetry are not well understood. During differentiation, Arabidopsis seed coat epidermal cells deposit large amounts of pectin-rich mucilage asymmetrically to form an extracellular pocket between the plasma membrane and the outer tangential primary cell wall. At maturity, the mucilage expands on contact with water, ruptures the primary cell wall, and extrudes to encapsulate the seed. In addition to polysaccharides, mucilage contains secreted proteins including the ß-galactosidase MUCILAGE MODIFIED 2 (MUM2). A functional chimeric protein where MUM2 was fused translationally with Citrine yellow fluorescent protein (Citrine) indicated that MUM2-Citrine fluorescence preferentially accumulates in the mucilage pocket concomitant with mucilage deposition and rapidly disappears when mucilage synthesis ceases. A secreted form of Citrine, secCitrine, showed a similar pattern of localization when expressed in developing seed coat epidermal cells. This result suggested that both the asymmetric localization and rapid decrease of fluorescence is not unique to MUM2-Citrine and may represent the default pathway for secreted proteins in this cell type. v-SNARE proteins were localized only in the membrane adjacent to the mucilage pocket, supporting the hypothesis that the cellular secretory apparatus is redirected and targets secretion to the outer periclinal apoplast during mucilage synthesis. In addition, mutation of ECHIDNA, a gene encoding a TGN-localized protein involved in vesicle targeting, causes misdirection of mucilage, MUM2 and v-SNARE proteins from the apoplast/plasma membrane to the vacuole/tonoplast. Western blot analyses suggested that the disappearance of MUM2-Citrine fluorescence at the end of mucilage synthesis is due to protein degradation and because several proteases have been identified in extruded seed mucilage. However, as mutation of these genes did not result in a substantial delay in MUM2-Citrine degradation and the timing of their expression and/or their intracellular localization were not consistent with a role in MUM2-Citrine disappearance, the mechanism underlying the abrupt decrease of MUM2-Citrine remains unclear.

2.
Plant Cell Physiol ; 62(12): 1847-1857, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34195842

RESUMO

In plants, the diaspore (seed dispersal unit) may include a seed coat and/or pericarp to protect the embryo and assist in dispersion. In many species, the seed coat and/or pericarp secrete a gelatinous mixture of cell wall polysaccharides known as mucilage. In several species, mucilage synthesis, secretion and modification have been studied extensively as model systems for the investigation of plant cell wall structure and function. Despite this, efforts toward understanding the role of mucilage have received less attention. Mucilage has been hypothesized to impact seed dispersal through interaction with soil, protecting the seed in the gut following ingestion by animals or affecting the ability of seeds to sink or float in water. Mucilage has been found to influence seed germination and seedling establishment, most often during abiotic stress, probably by maintaining seed hydration when water is scarce. Finally, mucilage has been documented to mediate interactions with various organisms. Advances in transgenic technology should enable the genetic modification of mucilage structure and function in crop plants. Cells synthesizing mucilage may also be a suitable platform for creating custom polysaccharides or proteins with industrial applications. Thus, in the near future, it is likely that research on seed mucilage will expand well beyond the current focus. Here we summarize our understanding of the biological functions of mucilage and provide an outlook on the future of mucilage research.


Assuntos
Biotecnologia , Mucilagem Vegetal/metabolismo , Plantas/metabolismo , Sementes/metabolismo , Parede Celular/metabolismo
3.
Plant Cell Physiol ; 62(12): 1912-1926, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34059917

RESUMO

The cell wall is essential for plant survival. Determining the relationship between cell wall structure and function using mutant analysis or overexpressing cell wall-modifying enzymes has been challenging due to the complexity of the cell wall and the appearance of secondary, compensatory effects when individual polymers are modified. In addition, viability of the plants can be severely impacted by wall modification. A useful model system for studying structure-function relationships among extracellular matrix components is the seed coat epidermal cells of Arabidopsis thaliana. These cells synthesize relatively simple, easily accessible, pectin-rich mucilage that is not essential for plant viability. In this study, we expressed enzymes predicted to modify polysaccharide components of mucilage in the apoplast of seed coat epidermal cells and explored their impacts on mucilage. The seed coat epidermal-specific promoter TESTA ABUNDANT2 (TBA2) was used to drive expression of these enzymes to avoid adverse effects in other parts of the plant. Mature transgenic seeds expressing Rhamnogalacturonate lyase A (RglA) or Rhamnogalacturonate lyase B (RglB) that degrade the pectin rhamnogalacturonan-I (RG-I), a major component of mucilage, had greatly reduced mucilage capsules surrounding the seeds and concomitant decreases in the monosaccharides that comprise the RG-I backbone. Degradation of the minor mucilage component homogalacturonan (HG) using the HG-degrading enzymes Pectin lyase A (PLA) or ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2) resulted in developing seed coat epidermal cells with disrupted cell-cell adhesion and signs of early cell death. These results demonstrate the feasibility of manipulating the seed coat epidermal cell extracellular matrix using a targeted genetic engineering approach.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Pectinas/metabolismo , Mucilagem Vegetal/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Sementes/química
4.
Plant Cell Physiol ; 62(12): 1927-1943, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042158

RESUMO

Galactose oxidases (GalOxs) are well-known enzymes that have been identified in several fungal species and characterized using structural and enzymatic approaches. However, until very recently, almost no information on their biological functions was available. The Arabidopsis (Arabidopsis thaliana) gene ruby particles in mucilage (RUBY) encodes a putative plant GalOx that is required for pectin cross-linking through modification of galactose (Gal) side chains and promotes cell-cell adhesion between seed coat epidermal cells. RUBY is one member of a family of seven putative GalOxs encoded in the Arabidopsis genome. To examine the function(s) of GalOxs in plants, we studied the remaining six galactose oxidase-like (GOXL) proteins. Like RUBY, four of these proteins (GOXL1, GOXL3, GOXL5 and GOXL6) were found to localize primarily to the apoplast, while GOXL2 and GOXL4 were found primarily in the cytoplasm. Complementation and GalOx assay data suggested that GOXL1, GOXL3 and possibly GOXL6 have similar biochemical activity to RUBY, whereas GOXL5 only weakly complemented and GOXL2 and GOXL4 showed no activity. Members of this protein family separated into four distinct clades prior to the divergence of the angiosperms. There have been recent duplications in Brassicaceae resulting in two closely related pairs of genes that have either retained similarity in expression (GOXL1 and GOXL6) or show expression divergence (GOXL3 and RUBY). Mutant phenotypes were not detected when these genes were disrupted, but their expression patterns suggest that these proteins may function in tissues that require mechanical reinforcements in the absence of lignification.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Galactose Oxidase/genética , Expressão Gênica , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Galactose Oxidase/metabolismo , Filogenia , Alinhamento de Sequência
5.
Appl Plant Sci ; 8(4): e11332, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32351794

RESUMO

PREMISE: Seed oil is an economically important trait in Brassica oilseed crops. A novel method was developed to isolate Arabidopsis thaliana seeds with altered oil content. METHODS AND RESULTS: In A. thaliana, seed oil content is correlated with seed density, with high-oil seeds being less dense than wild type and tending to float in solution, and low-oil seeds being denser and tending to sink. In contrast to previous methods, which used toxic chemicals and density gradient centrifugation, different concentrations of calcium chloride (CaCl2) were employed to separate seeds without the need for centrifugation. The method was validated using known seed oil mutants, and 120,822 T-DNA mutagenized A. thaliana lines were then screened for novel seed density phenotypes. CONCLUSIONS: A number of candidate mutants, as well as new alleles of two genes known to influence seed oil biosynthesis, were successfully isolated.

6.
Plant Cell Physiol ; 61(2): 308-317, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626281

RESUMO

Following exposure to water, mature Arabidopsis seeds are surrounded by a gelatinous capsule, termed mucilage. The mucilage consists of pectin-rich polysaccharides, which are produced in epidermal cells of the seed coat. Although pectin is a major component of plant cell walls, its biosynthesis and biological functions are not fully understood. Previously, we reported that a transmembrane RING E3 ubiquitin ligase, FLYING SAUCER 1 (FLY1) regulates the degree of pectin methyl esterification for mucilage capsule formation. The Arabidopsis thaliana genome has a single FLY1 homolog, FLY2. In this study, we show that the FLY2 protein functions in mucilage modification together with FLY1. FLY2 was expressed in seed coat epidermal cells during mucilage synthesis, but its expression level was much lower than that of FLY1. While fly2 showed no obvious difference in mucilage capsule formation from wild type, the fly1 fly2 double mutants showed more severe defects in mucilage than fly1 alone. FLY2-EYFP that was expressed under the control of the FLY1 promoter rescued fly1 mucilage, showing that FLY2 has the same molecular function as FLY1. FLY2-EYFP colocalized with marker proteins of Golgi apparatus (sialyltransferase-mRFP) and late endosome (mRFP-ARA7), indicating that as FLY1, FLY2 controls pectin modification by functioning in these endomembrane organelles. Furthermore, phylogenetic analysis suggests that FLY1 and FLY2 originated from a common ancestral gene by gene duplication prior to the emergence of Brassicaceae. Taken together, our findings suggest that FLY2 functions in the Golgi apparatus and/or the late endosome of seed coat epidermal cells in a manner similar to FLY1.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mucilagem Vegetal/genética , Mucilagem Vegetal/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Parede Celular/metabolismo , Endossomos/metabolismo , Células Epidérmicas , Esterificação , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/metabolismo , Pectinas/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Sementes/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Plant Physiol ; 181(3): 901-915, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31484679

RESUMO

Secretory trafficking is highly conserved in all eukaryotic cells and is required for secretion of proteins as well as extracellular matrix components. In plants, the export of cuticular waxes and various cell wall components relies on secretory trafficking, but the molecular mechanisms underlying their secretion are not well understood. In this study, we characterize the Arabidopsis (Arabidopsis thaliana) dwarf eceriferum11 (cer11) mutant and we show that it exhibits reduced stem cuticular wax deposition, aberrant seed coat mucilage extrusion, and delayed secondary cell wall columella formation, as well as a block in secretory GFP trafficking. Cloning of the CER11 gene revealed that it encodes a C-TERMINAL DOMAIN PHOSPHATASE-LIKE2 (CPL2) protein. Thus, secretory trafficking in plant cells in general, and secretion of extracellular matrix constituents in developing epidermal cells in particular, involves a dephosphorylation step catalyzed by CER11/CPL2.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Fenótipo , Epiderme Vegetal/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Sementes/metabolismo , Ubiquitina-Proteína Ligases/genética , beta-Galactosidase/metabolismo
8.
Plant Mol Biol ; 101(4-5): 373-387, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31422517

RESUMO

KEY MESSAGE: Polysaccharide composition of seed mucilage was successfully modified using three seed coat-specific promoters driving expression of genes encoding cell wall-modifying enzymes. Arabidopsis thaliana seed coat epidermal cells synthesize and secrete large quantities of mucilage, a specialized secondary cell wall composed of cellulose, hemicellulose, and pectin. The composition and structure of mucilage confers its unique properties of expansion, extrusion, and adherence. We are developing seed mucilage as a model to study the biochemical and biological consequences of manipulating cell wall polysaccharides in vivo using cell wall-modifying enzymes. To specifically engineer mucilage composition and avoid altering other cell types, seed coat-specific promoters are required. In this study, we investigated the ability of seed coat-specific promoters from three genes, TESTA-ABUNDANT2 (TBA2), PEROXIDASE36 (PER36), and MUCILAGE-MODIFIED4 (MUM4), to express the cell wall modifying ß-galactosidase (BGAL)-encoding gene MUCILAGE-MODIFIED2 (MUM2) and complement the mum2 mutant. The strength of the three promoters relative to one another was found to vary by two to 250 fold, and correlated with their ability to rescue the mum2 mutant phenotype. The strongest of the three promoters, TBA2p, was then used to examine the ability of three MUM2 homologs to complement the mum2 extrusion and cell wall composition phenotypes. The degree of complementation was variable and correlated with the amino acid sequence similarity between the homologous gene products and MUM2. These data demonstrate that all three seed coat-specific promoters can drive expression of genes encoding carbohydrate-active enzymes in a spatial and temporal pattern sufficiently to modify polysaccharide composition in seed mucilage without obvious negative consequences to the rest of the plant.


Assuntos
Arabidopsis/genética , Parede Celular/metabolismo , Mucilagem Vegetal/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Parede Celular/química , Regulação da Expressão Gênica de Plantas , Filogenia , Mucilagem Vegetal/genética , Regiões Promotoras Genéticas , Domínios Proteicos , Sementes/genética , Sementes/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
9.
Plant Cell ; 31(4): 809-831, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30852555

RESUMO

Cell-to-cell adhesion is essential for establishment of multicellularity. In plants, such adhesion is mediated through a middle lamella composed primarily of pectic polysaccharides. The molecular interactions that influence cell-to-cell adhesion are not fully understood. We have used Arabidopsis (Arabidopsis thaliana) seed coat mucilage as a model system to investigate interactions between cell wall carbohydrates. Using a forward-genetic approach, we have discovered a gene, RUBY PARTICLES IN MUCILAGE (RUBY), encoding a protein that is annotated as a member of the Auxiliary Activity 5 (AA5) family of Carbohydrate-Active Enzymes (Gal/glyoxal oxidases) and is secreted to the apoplast late in the differentiation of seed coat epidermal cells. We show that RUBY is required for the Gal oxidase activity of intact seeds; the oxidation of Gal in side-chains of rhamnogalacturonan-I (RG-I) present in mucilage-modified2 (mum2) mucilage, but not in wild-type mucilage; the retention of branched RG-I in the seed following extrusion; and the enhancement of cell-to-cell adhesion in the seed coat epidermis. These data support the hypothesis that RUBY is a Gal oxidase that strengthens pectin cohesion within the middle lamella, and possibly the mucilage of wild-type seed coat epidermal cells, through oxidation of RG-I Gal side-chains.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Galactose Oxidase/metabolismo , Pectinas/metabolismo , Sementes/metabolismo , Galactose Oxidase/genética , Regulação da Expressão Gênica de Plantas/fisiologia
10.
Bio Protoc ; 9(24): e3464, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654956

RESUMO

Arabidopsis seed coat epidermal cells deposit a significant quantity of mucilage, composed of the cell wall components pectin, hemicellulose, and cellulose, into the apoplast during development. When mature seeds are hydrated, mucilage extrudes to form a gelatinous capsule around the seed. Determining the monosaccharide composition of both extruded mucilage and whole seeds is an essential technique for characterizing seed coat developmental processes and mutants with altered mucilage composition. This protocol covers growth of plants to produce seeds suitable for analysis, extraction of extruded mucilage using water and sodium carbonate (used for mutants with impaired mucilage release), and extraction of alcohol insoluble residue (AIR) from whole seeds. The prepared polysaccharides are then hydrolyzed using sulfuric acid, which hydrolyses all polysaccharides including cellulose. Sensitive and reproducible quantification of the resulting monosaccharides is achieved using high-performance anion exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD).

11.
Plant Mol Biol ; 95(1-2): 33-50, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28730525

RESUMO

KEY MESSAGE: The Arabidopsis seed coat-specific promoter fragment described is an important tool for basic and applied research in Brassicaceae species. During differentiation, the epidermal cells of the Arabidopsis seed coat produce and secrete large quantities of mucilage. On hydration of mature seeds, this mucilage becomes easily accessible as it is extruded to form a tightly attached halo at the seed surface. Mucilage is composed mainly of pectin, and also contains the key cell wall components cellulose, hemicellulose, and proteins, making it a valuable model for studying numerous aspects of cell wall biology. Seed coat-specific promoters are an important tool that can be used to assess the effects of expressing biosynthetic enzymes and diverse cell wall-modifying proteins on mucilage structure and function. Additionally, they can be used for production of easily accessible recombinant proteins of commercial interest. The MUCILAGE-MODIFIED4 (MUM4) gene is expressed in a wide variety of plant tissues and is strongly up-regulated in the seed coat during mucilage synthesis, implying the presence of a seed coat-specific region in its promoter. Promoter deletion analysis facilitated isolation of a 308 base pair sequence (MUM4 0.3Pro ) that directs reporter gene expression in the seed coat cells of both Arabidopsis and Camelina sativa, and is regulated by the same transcription factor cascade as endogenous MUM4. Therefore, MUM4 0.3Pro is a promoter fragment that serves as a new tool for seed coat biology research.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Complexos Multienzimáticos/genética , Regiões Promotoras Genéticas , Sementes/genética , Regiões 5' não Traduzidas/genética , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Inativação Gênica , Genes Reporter , Teste de Complementação Genética , Glucuronidase/metabolismo , Íntrons/genética , Complexos Multienzimáticos/metabolismo , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase em Tempo Real , Deleção de Sequência , Fatores de Transcrição/metabolismo
12.
Plant Physiol ; 173(2): 1059-1074, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28003327

RESUMO

Plant cell wall proteins are important regulators of cell wall architecture and function. However, because cell wall proteins are difficult to extract and analyze, they are generally poorly understood. Here, we describe the identification and characterization of proteins integral to the Arabidopsis (Arabidopsis thaliana) seed coat mucilage, a specialized layer of the extracellular matrix composed of plant cell wall carbohydrates that is used as a model for cell wall research. The proteins identified in mucilage include those previously identified by genetic analysis, and several mucilage proteins are reduced in mucilage-deficient mutant seeds, suggesting that these proteins are genuinely associated with the mucilage. Arabidopsis mucilage has both nonadherent and adherent layers. Both layers have similar protein profiles except for proteins involved in lipid metabolism, which are present exclusively in the adherent mucilage. The most abundant mucilage proteins include a family of proteins named TESTA ABUNDANT1 (TBA1) to TBA3; a less abundant fourth homolog was named TBA-LIKE (TBAL). TBA and TBAL transcripts and promoter activities were detected in developing seed coats, and their expression requires seed coat differentiation regulators. TBA proteins are secreted to the mucilage pocket during differentiation. Although reverse genetics failed to identify a function for TBAs/TBAL, the TBA promoters are highly expressed and cell type specific and so should be very useful tools for targeting proteins to the seed coat epidermis. Altogether, these results highlight the mucilage proteome as a model for cell walls in general, as it shares similarities with other cell wall proteomes while also containing mucilage-specific features.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mucilagem Vegetal/metabolismo , Sementes/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Parede Celular/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Epiderme Vegetal/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Plant Physiol ; 168(2): 502-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25926481

RESUMO

Cellulose synthase5 (CESA5) synthesizes cellulose necessary for seed mucilage adherence to seed coat epidermal cells of Arabidopsis (Arabidopsis thaliana). The involvement of additional CESA proteins in this process and details concerning the manner in which cellulose is deposited in the mucilage pocket are unknown. Here, we show that both CESA3 and CESA10 are highly expressed in this cell type at the time of mucilage synthesis and localize to the plasma membrane adjacent to the mucilage pocket. The isoxaben resistant1-1 and isoxaben resistant1-2 mutants affecting CESA3 show defects consistent with altered mucilage cellulose biosynthesis. CESA3 can interact with CESA5 in vitro, and green fluorescent protein-tagged CESA5, CESA3, and CESA10 proteins move in a linear, unidirectional fashion around the cytoplasmic column of the cell, parallel with the surface of the seed, in a pattern similar to that of cortical microtubules. Consistent with this movement, cytological evidence suggests that the mucilage is coiled around the columella and unwinds during mucilage extrusion to form a linear ray. Mutations in CESA5 and CESA3 affect the speed of mucilage extrusion and mucilage adherence. These findings imply that cellulose fibrils are synthesized in an ordered helical array around the columella, providing a distinct structure to the mucilage that is important for both mucilage extrusion and adherence.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Celulose/metabolismo , Glucosiltransferases/metabolismo , Complexos Multienzimáticos/metabolismo , Epiderme Vegetal/citologia , Mucilagem Vegetal/metabolismo , Sementes/citologia , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Citoplasma/metabolismo , Glucosiltransferases/química , Proteínas de Fluorescência Verde/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Pectinas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Dedos de Zinco
14.
Plant Physiol ; 167(3): 725-37, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25572606

RESUMO

Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Sementes/embriologia , Sementes/enzimologia , Anticorpos/metabolismo , Arabidopsis/genética , Fenômenos Biomecânicos , Tamanho Celular , Esterificação , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutagênese Insercional , Pectinas/metabolismo , Fenótipo , Mucilagem Vegetal/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/ultraestrutura
15.
Plant Physiol ; 165(3): 991-1004, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24808103

RESUMO

Interactions between cell wall polymers are critical for establishing cell wall integrity and cell-cell adhesion. Here, we exploit the Arabidopsis (Arabidopsis thaliana) seed coat mucilage system to examine cell wall polymer interactions. On hydration, seeds release an adherent mucilage layer strongly attached to the seed in addition to a nonadherent layer that can be removed by gentle agitation. Rhamnogalacturonan I (RG I) is the primary component of adherent mucilage, with homogalacturonan, cellulose, and xyloglucan constituting minor components. Adherent mucilage contains rays composed of cellulose and pectin that extend above the center of each epidermal cell. CELLULOSE SYNTHASE5 (CESA5) and the arabinogalactan protein SALT-OVERLY SENSITIVE5 (SOS5) are required for mucilage adherence through unknown mechanisms. SOS5 has been suggested to mediate adherence by influencing cellulose biosynthesis. We, therefore, investigated the relationship between SOS5 and CESA5. cesa5-1 seeds show reduced cellulose, RG I, and ray size in adherent mucilage. In contrast, sos5-2 seeds have wild-type levels of cellulose but completely lack adherent RG I and rays. Thus, relative to each other, cesa5-1 has a greater effect on cellulose, whereas sos5-2 mainly affects pectin. The double mutant cesa5-1 sos5-2 has a much more severe loss of mucilage adherence, suggesting that SOS5 and CESA5 function independently. Double-mutant analyses with mutations in MUCILAGE MODIFIED2 and FLYING SAUCER1 that reduce mucilage release through pectin modification suggest that only SOS5 influences pectin-mediated adherence. Together, these findings suggest that SOS5 mediates adherence through pectins and does so independently of but in concert with cellulose synthesized by CESA5.

16.
PLoS One ; 8(12): e84303, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376800

RESUMO

We have generated a Brassica napus (canola) population of 3,158 EMS-mutagenised lines and used TILLING to demonstrate that the population has a high enough mutation density that it will be useful for identification of mutations in genes of interest in this important crop species. TILLING is a reverse genetics technique that has been successfully used in many plant and animal species. Classical TILLING involves the generation of a mutagenised population, followed by screening of DNA samples using a mismatch-specific endonuclease that cleaves only those PCR products that carry a mutation. Polyacrylamide gel detection is then used to visualise the mutations in any gene of interest. We have used this TILLING technique to identify 432 unique mutations in 26 different genes in B. napus (canola cv. DH12075). This reflects a mutation density ranging from 1/56 kb to 1/308 kb (depending on the locus) with an average of 1/109 kb. We have also successfully verified the utility of next generation sequencing technology as a powerful approach for the identification of rare mutations in a population of plants, even in polyploid species such as B. napus. Most of the mutants we have identified are publically available.


Assuntos
Brassica napus/genética , Análise Mutacional de DNA/métodos , Variação Genética/genética , Mutagênese/genética , Sequência de Bases , Brassica napus/crescimento & desenvolvimento , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida/métodos , Dados de Sequência Molecular , Taxa de Mutação
17.
Plant Cell Physiol ; 54(11): 1867-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24058145

RESUMO

During cell wall biosynthesis, the Golgi apparatus is the platform for cell wall matrix biosynthesis and the site of packaging, of both matrix polysaccharides and proteins, into secretory vesicles with the correct targeting information. The objective of this study was to dissect the post-Golgi trafficking of cell wall polysaccharides using echidna as a vesicle traffic mutant of Arabidopsis thaliana and the pectin-secreting cells of the seed coat as a model system. ECHIDNA encodes a trans-Golgi network (TGN)-localized protein, which was previously shown to be required for proper structure and function of the secretory pathway. In echidna mutants, some cell wall matrix polysaccharides accumulate inside cells, rather than being secreted to the apoplast. In this study, live cell imaging of fluorescent protein markers as well as transmission electron microscopy (TEM)/immunoTEM of cryofixed seed coat cells were used to examine the consequences of TGN disorganization in echidna mutants under conditions of high polysaccharide production and secretion. While in wild-type seed coat cells, pectin is secreted to the apical surface, in echidna, polysaccharides accumulate in post-Golgi vesicles, the central lytic vacuole and endoplasmic reticulum-derived bodies. In contrast, proteins were partially mistargeted to internal multilamellar membranes in echidna. These results suggest that while secretion of both cell wall polysaccharides and proteins at the TGN requires ECHIDNA, different vesicle trafficking components may mediate downstream events in their secretion from the TGN.


Assuntos
Arabidopsis/metabolismo , Pectinas/metabolismo , Polissacarídeos/metabolismo , Vesículas Transportadoras/metabolismo , Vacúolos/metabolismo , Rede trans-Golgi/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Transporte Biológico , Membrana Celular/metabolismo , Parede Celular/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Mutação , Fenótipo , Mucilagem Vegetal/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/ultraestrutura
18.
Plant Cell ; 25(3): 944-59, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23482858

RESUMO

Pectins are complex polysaccharides that form the gel matrix of the primary cell wall and are abundant in the middle lamella that holds plant cells together. Their degree of methylesterification (DM) impacts wall strength and cell adhesion since unesterified pectin regions can cross-link via Ca(2+) ions to form stronger gels. Here, we characterize flying saucer1 (fly1), a novel Arabidopsis thaliana seed coat mutant, which displays primary wall detachment, reduced mucilage extrusion, and increased mucilage adherence. These defects appear to result from a lower DM in mucilage and are enhanced by the addition of Ca(2+) or completely rescued using alkaline Ca(2+) chelators. FLY1 encodes a transmembrane protein with a RING-H2 domain that has in vitro E3 ubiquitin ligase activity. FLY1 is orthologous to TRANSMEMBRANE UBIQUITIN LIGASE1, a Golgi-localized E3 ligase involved in the quality control of membrane proteins in yeast. However, FLY1-yellow fluorescent protein (YFP) fusions are localized in punctae that are predominantly distinct from the Golgi and the trans-Golgi network/early endosome in the seed coat epidermis. Wortmannin treatment, which induces the fusion of late endosomes in plants, resulted in enlarged FLY1-YFP bodies. We propose that FLY1 regulates the DM of pectin in mucilage, potentially by recycling pectin methylesterase enzymes in the endomembrane system of seed coat epidermal cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Pectinas/metabolismo , Mucilagem Vegetal/metabolismo , Sementes/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Cálcio/farmacologia , Parede Celular/genética , Parede Celular/metabolismo , Quelantes/farmacologia , Endossomos/enzimologia , Endossomos/genética , Endossomos/metabolismo , Esterificação , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Mucilagem Vegetal/genética , Sementes/efeitos dos fármacos , Sementes/genética , Ubiquitina-Proteína Ligases/genética , Água/metabolismo
19.
Planta ; 237(5): 1199-211, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23328896

RESUMO

The Arabidopsis thaliana KNAT7 (KNOX family) and MYB75 (MYB family) transcription factors were each shown earlier to interact in yeast two-hybrid assays, and to modulate secondary cell wall formation in inflorescence stems. We demonstrate here that their interaction also occurs in vivo, and that specific domains of each protein mediate this process. The participation of these interacting transcription factors in secondary cell wall formation was then extended to the developing seed coat through the use of targeted transcript analysis and SEM in single loss-of-function mutants. Novel genetic and protein-protein interactions of MYB75 and KNAT7 with other transcription factors known to be involved in seed coat regulation were also identified. We propose that a MYB75-associated protein complex is likely to be involved in modulating secondary cell wall biosynthesis in both the Arabidopsis inflorescence stem and seed coat, and that at least some parts of the transcriptional regulatory network in the two tissues are functionally conserved.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Caules de Planta/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Caules de Planta/genética , Sementes/genética , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
20.
Plant Mol Biol ; 81(1-2): 93-104, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23115000

RESUMO

Differentiation of the Arabidopsis thaliana (Arabidopsis) seed coat epidermal cells involves pronounced changes highlighted by the synthesis and secretion of copious amounts of dispensable, pectinaceous mucilage followed by a thick cellulosic secondary cell wall. This cell type, therefore, represents an excellent molecular-genetic model to study the biosynthesis and modification of cell wall components, particularly pectin. To support such research, we sought to identify a promoter that drives expression specifically in the Arabidopsis seed coat epidermis. Arabidopsis seed coat microarray data was analysed for genes expressed in the wild type seed coat but not the seed coat of the apetala2 mutant where the epidermal cells fail to differentiate. Of 14 candidate genes, 9 showed a seed-specific expression pattern by reverse transcriptase-PCR. Transcriptional regulatory region-ß-glucuronidase (GUS) reporter gene fusions introduced into Arabidopsis identified one promoter, that of the DIRIGENT PROTEIN1 (DP1) gene, as seed coat specific. The specificity of the expression was confirmed using a second reporter gene, Citrine YFP. Expression of both reporter genes was limited to the epidermal and palisade cell layers of the seed coat. Quantitative PCR data using wild type seed coat RNA suggested that the promoter is particularly active at 7 days post anthesis. The DP1 promoter was able to direct transcription of GUS in a similar pattern in the Brassica napus seed coat. Thus, in addition to its application in studying the plant cell wall, this promoter will provide an experimental tool for expressing high-valued recombinant proteins as well as modifying seed coat traits in economically important crops.


Assuntos
Arabidopsis/genética , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expressão Gênica , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/citologia , Sementes/genética , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA