Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 121(9): 096601, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230853

RESUMO

We compute the thermal conductivity and electrical resistivity of solid hcp Fe to pressures and temperatures of Earth's core. We find significant contributions from electron-electron scattering, usually neglected at high temperatures in transition metals. Our calculations show a quasilinear relation between the electrical resistivity and temperature for hcp Fe at extreme high pressures. We obtain thermal and electrical conductivities that are consistent with experiments considering reasonable error. The predicted thermal conductivity is reduced from previous estimates that neglect electron-electron scattering. Our estimated thermal conductivity for the outer core is 77±10 W m^{-1} K^{-1} and is consistent with a geodynamo driven by thermal convection.

2.
Phys Rev Lett ; 119(6): 067004, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949599

RESUMO

Recent observation of ∼10 times higher critical temperature in a FeSe monolayer compared with its bulk phase has drawn a great deal of attention because the electronic structure in the monolayer phase appears to be different than bulk FeSe. Using a combination of density functional theory and dynamical mean field theory, we find electronic correlations have important effects on the predicted atomic-scale geometry and the electronic structure of the monolayer FeSe on SrTiO_{3}. The electronic correlations are dominantly controlled by the Se-Fe-Se angle either in the bulk phase or the monolayer phase. But the angle sensitivity increases and the orbital differentiation decreases in the monolayer phase compared to the bulk phase. The correlations are more dependent on Hund's J than Hubbard U. The observed orbital selective incoherence to coherence crossover with temperature confirms the Hund's metallic nature of the monolayer FeSe. We also find electron doping by oxygen vacancies in SrTiO_{3} increases the correlation strength, especially in the d_{xy} orbital by reducing the Se-Fe-Se angle.

3.
Phys Rev Lett ; 117(22): 227601, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27925725

RESUMO

We study URu_{2-x}Fe_{x}Si_{2}, in which two types of staggered phases compete at low temperature as the iron concentration x is varied: the nonmagnetic "hidden order" (HO) phase below the critical concentration x_{c}, and unconventional antiferromagnetic (AFM) phase above x_{c}. By using polarization resolved Raman spectroscopy, we detect a collective mode of pseudovectorlike A_{2g} symmetry whose energy continuously evolves with increasing x; it monotonically decreases in the HO phase until it vanishes at x=x_{c}, and then reappears with increasing energy in the AFM phase. The mode's evolution provides direct evidence for a unified order parameter for both nonmagnetic and magnetic phases arising from the orbital degrees-of-freedom of the uranium-5f electrons.

4.
Phys Rev Lett ; 117(14): 147402, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740819

RESUMO

We combined high field optical spectroscopy and first principles calculations to analyze the electronic structure of Ni_{3}TeO_{6} across the 53 K and 9 T magnetic transitions, both of which are accompanied by large changes in electric polarization. The color properties are sensitive to magnetic order due to field-induced changes in the crystal field environment, with those around Ni1 and Ni2 most affected. These findings advance the understanding of magnetoelectric coupling in materials in which magnetic 3d centers coexist with nonmagnetic heavy chalcogenide cations.

5.
Phys Rev Lett ; 117(5): 056402, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27517782

RESUMO

We present a theoretical investigation of the electronic structure of rutile (metallic) and M_{1} and M_{2} monoclinic (insulating) phases of VO_{2} employing a fully self-consistent combination of density functional theory and embedded dynamical mean field theory calculations. We describe the electronic structure of the metallic and both insulating phases of VO_{2}, and propose a distinct mechanism for the gap opening. We show that Mott physics plays an essential role in all phases of VO_{2}: undimerized vanadium atoms undergo classical Mott transition through local moment formation (in the M_{2} phase), while strong superexchange within V dimers adds significant dynamic intersite correlations, which remove the singularity of self-energy for dimerized V atoms. The resulting transition from rutile to dimerized M_{1} phase is adiabatically connected to the Peierls-like transition, but is better characterized as the Mott transition in the presence of strong intersite exchange. As a consequence of Mott physics, the gap in the dimerized M_{1} phase is temperature dependent. The sole increase of electronic temperature collapses the gap, reminiscent of recent experiments.

6.
Science ; 347(6228): 1339-42, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25678557

RESUMO

A second-order phase transition in a physical system is associated with the emergence of an "order parameter" and a spontaneous symmetry breaking. The heavy fermion superconductor URu2Si2 has a "hidden order" (HO) phase below the temperature of 17.5 kelvin; the symmetry of the associated order parameter has remained ambiguous. Here we use polarization-resolved Raman spectroscopy to specify the symmetry of the low-energy excitations above and below the HO transition. We determine that the HO parameter breaks local vertical and diagonal reflection symmetries at the uranium sites, resulting in crystal field states with distinct chiral properties, which order to a commensurate chirality density wave ground state.

7.
Nature ; 517(7536): 605-7, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25631449

RESUMO

Earth's magnetic field has been thought to arise from thermal convection of molten iron alloy in the outer core, but recent density functional theory calculations have suggested that the conductivity of iron is too high to support thermal convection, resulting in the investigation of chemically driven convection. These calculations for resistivity were based on electron-phonon scattering. Here we apply self-consistent density functional theory plus dynamical mean-field theory (DFT + DMFT) to iron and find that at high temperatures electron-electron scattering is comparable to the electron-phonon scattering, bringing theory into agreement with experiments and solving the transport problem in Earth's core. The conventional thermal dynamo picture is safe. We find that electron-electron scattering of d electrons is important at high temperatures in transition metals, in contrast to textbook analyses since Mott, and that 4s electron contributions to transport are negligible, in contrast to numerous models used for over fifty years. The DFT+DMFT method should be applicable to other high-temperature systems where electron correlations are important.

8.
Nat Commun ; 4: 2644, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24136139

RESUMO

An understanding of the phase diagram of elemental plutonium (Pu) must include both, the effects of the strong directional bonding and the high density of states of the Pu 5f electrons, as well as how that bonding weakens under the influence of strong electronic correlations. Here we present electronic-structure calculations of the full 16-atom per unit cell α-phase structure within the framework of density functional theory together with dynamical mean-field theory. Our calculations demonstrate that Pu atoms sitting on different sites within the α-Pu crystal structure have a strongly varying site dependence of the localization-delocalization correlation effects of their 5f electrons and a corresponding effect on the bonding and electronic properties of this complicated metal. In short, α-Pu has the capacity to simultaneously have multiple degrees of electron localization/delocalization of Pu 5f electrons within a pure single-element material.

9.
Phys Rev Lett ; 108(21): 216401, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003285

RESUMO

An intricate interplay between superconductivity, pseudogap, and Mott transition, either bandwidth driven or doping driven, occurs in materials. Layered organic conductors and cuprates offer two prime examples. We provide a unified perspective of this interplay in the two-dimensional Hubbard model within cellular dynamical mean-field theory on a 2×2 plaquette and using the continuous-time quantum Monte Carlo method as impurity solver. Both at half filling and at finite doping, the metallic normal state close to the Mott insulator is unstable to d-wave superconductivity. Superconductivity can destroy the first-order transition that separates the pseudogap phase from the overdoped metal, yet that normal state transition leaves its marks on the dynamic properties of the superconducting phase. For example, as a function of doping one finds a rapid change in the particle-hole asymmetry of the superconducting density of states. In the doped Mott insulator, the dynamical mean-field superconducting transition temperature T(c)(d) does not scale with the order parameter when there is a normal-state pseudogap. T(c)(d) corresponds to the local pair formation temperature observed in tunneling experiments and is distinct from the pseudogap temperature.

10.
Sci Rep ; 2: 547, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22855703

RESUMO

The pseudogap refers to an enigmatic state of matter with unusual physical properties found below a characteristic temperature T* in hole-doped high-temperature superconductors. Determining T* is critical for understanding this state. Here we study the simplest model of correlated electron systems, the Hubbard model, with cluster dynamical mean-field theory to find out whether the pseudogap can occur solely because of strong coupling physics and short nonlocal correlations. We find that the pseudogap characteristic temperature T* is a sharp crossover between different dynamical regimes along a line of thermodynamic anomalies that appears above a first-order phase transition, the Widom line. The Widom line emanating from the critical endpoint of a first-order transition is thus the organizing principle for the pseudogap phase diagram of the cuprates. No additional broken symmetry is necessary to explain the phenomenon. Broken symmetry states appear in the pseudogap and not the other way around.

11.
Phys Rev Lett ; 108(14): 147002, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22540817

RESUMO

We report an infrared optical study of the pnictide high-temperature superconductor BaFe(1.84)Co(0.16)As(2) and its parent compound BaFe(2)As(2). We demonstrate that electronic correlations are moderately strong and do not change across the spin-density wave transition or with doping. By examining the energy scale and direction of spectral weight transfer, we argue that Hund's coupling J is the primary mechanism that gives rise to correlations.

12.
Phys Rev Lett ; 108(1): 016402, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22304274

RESUMO

We address theoretically the evolution of the heavy fermion Fermi surface (FS) as a function of temperature (T), using a first principles dynamical mean-field theory approach combined with density functional theory. We focus on the archetypical heavy electrons in CeIrIn{5}. Upon cooling, both the quantum oscillation frequencies and cyclotron masses show logarithmic scaling behavior [∼ln(T{0}/T)] with different characteristic temperatures T{0}=130 and 50 K, respectively. The enlargement of the electron FSs at low T is accompanied by topological changes around T=10-50 K. The resistivity coherence peak observed at T≃50 K is the result of the competition between the binding of incoherent 4f electrons to the spd conduction electrons at Fermi level (E{F}) and the formation of coherent 4f electrons.

13.
Nat Mater ; 10(12): 932-5, 2011 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-21927004

RESUMO

The iron pnictide and chalcogenide compounds are a subject of intensive investigations owing to their surprisingly high temperature superconductivity. They all share the same basic building blocks, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and transition temperature (T(c)). Many theoretical techniques have been applied to individual compounds but no consistent description of the microscopic origin of these variations is available. Here we carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. Taking into account correlation effects and realistic band structures, we describe well the trends in all of the physical properties such as the ordered moments, effective masses and Fermi surfaces across all families of iron compounds, and find them to be in good agreement with experiments. We trace variation in physical properties to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results also provide a natural explanation of the strongly Fermi-surface-dependent superconducting gaps observed in experiments.

14.
Phys Rev Lett ; 104(22): 226402, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20867185

RESUMO

Experiments on layered materials call for a study of the influence of short-range spin correlations on the Mott transition. To this end, we solve the cellular dynamical mean-field equations for the Hubbard model on a plaquette with continuous-time quantum Monte Carlo calculations. The normal-state phase diagram as a function of temperature T, interaction strength U, and filling n reveals that upon increasing n towards the insulator, there is a surface of first-order transition between two metals at nonzero doping. For T above the critical end line there is a maximum in scattering rate.

15.
Phys Rev Lett ; 103(1): 016803, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19659166

RESUMO

We study the impact of dynamical correlations on the electronic structure and coherent transport properties of Cu nanocontacts hosting a single magnetic impurity (Ni, Co, Fe) in the contact region. The strong dynamical correlations of the impurity 3d electrons are fully taken into account by combining density-functional calculations with a dynamical treatment of the impurity 3d shell in the one-crossing approximation. We find that dynamical correlations give rise to the Kondo effect and lead to Fano features in the coherent transport characteristics similar to those observed in related experiments.

16.
Phys Rev Lett ; 101(18): 186403, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18999845

RESUMO

We address the nature of the Mott transition in the Hubbard model at half-filling using cluster dynamical mean field theory (DMFT). We compare cluster-DMFT results with those of single-site DMFT. We show that inclusion of the short-range correlations on top of the on-site correlations does not change the order of the transition between the paramagnetic metal and the paramagnetic Mott insulator, which remains first order. However, the short range correlations reduce substantially the critical U and modify the shape of the transition lines. Moreover, they lead to very different physical properties of the metallic and insulating phases near the transition point. Approaching the transition from the metallic side, we find an anomalous metallic state with very low coherence scale. The insulating state is characterized by the narrow Mott gap with pronounced peaks at the gap edge.

17.
Phys Rev Lett ; 101(12): 126403, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18851396

RESUMO

The puzzling absence of Pu magnetic moments in a PuAm environment is explored using the self-consistent dynamical mean field theory calculations in combination with the local density approximation. We argue that delta-Pu-Am alloys provide an ideal testbed for investigating the screening of moments from the single impurity limit to the dense limit. Several important effects can be studied: volume expansion, shift of the bare Pu on-site f energy level, and the reduction of the hybridization cloud resulting from the collective character of the Kondo effect in the Anderson lattice. These effects compensate each other and result in a coherence scale, which is independent of alloy composition, and is around 800 K.

18.
Phys Rev Lett ; 101(5): 056403, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18764412

RESUMO

A combination of density functional theory and the dynamical mean-field theory (DMFT) is used to calculate the magnetic susceptibility, heat capacity, and the temperature dependence of the valence band photoemission spectra for delta-Pu. We predict that delta-Pu has a Pauli-like magnetic susceptibility near ambient temperature, as in experiment, indicating that electronic coherence causes the absence of local moments. Additionally, we show that volume expansion causes a crossover from incoherent to coherent electronic behavior at increasingly lower temperatures.

19.
Phys Rev Lett ; 100(22): 226402, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18643434

RESUMO

We compute the electronic structure, momentum resolved spectral function and optical conductivity of the new superconductor LaO1-xFxFeAs within the combination of the density functional theory and dynamical mean field theory. We find that the compound in the normal state is a strongly correlated metal and the parent compound is a bad metal at the verge of the metal insulator transition. We argue that the superconductivity is not phonon mediated.

20.
Phys Rev Lett ; 100(4): 046402, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18352310

RESUMO

We study the superconducting state of the hole-doped two-dimensional Hubbard model using cellular dynamical mean-field theory, with the Lanczos method as impurity solver. In the underdoped regime, we find a natural decomposition of the one-particle (photoemission) energy gap into two components. The gap in the nodal regions, stemming from the anomalous self-energy, decreases with decreasing doping. The antinodal gap has an additional contribution from the normal component of the self-energy, inherited from the normal-state pseudogap, and it increases as the Mott insulating phase is approached.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA