Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
React Chem Eng ; 9(5): 1154-1163, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38694426

RESUMO

The concept of Supported Catalytically Active Liquid Metal Solutions (SCALMS) was explored for the catalytic dehydrogenation of n-heptane. For this purpose, a GaPt on alumina (Ga84Pt/Al2O3) was compared with a Pt on alumina catalyst at different reaction temperatures and feed compositions. While the observed activation energies with both catalysts for the overall n-heptane depletion rate were similar with both catalysts, the SCALMS systems provides a lower activation energy for the desired dehydrogenation path and significantly higher activation energies for the undesired aromatization and cracking reaction. Thus, the SCALMS catalyst under investigation shows technically interesting features, in particular at high temperature operation. The partial pressure variation revealed an effective reaction order of around 0.7 for n-heptane for both catalysts, while the effective order for hydrogen was 0.35 for Pt/Al2O3 and almost zero for SCALMS.

2.
Catal Sci Technol ; 13(15): 4435-4450, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38014413

RESUMO

Supported catalytically active liquid metal solution (SCALMS) materials represent a recently developed class of heterogeneous catalysts, where the catalytic reaction takes place at the highly dynamic interface of supported liquid alloys. Ga nuggets were dispersed into nano-droplets in propan-2-ol using ultrasonication followed by the addition of Pt in a galvanic displacement reaction - either directly into the Ga/propan-2-ol dispersion (in situ) or consecutively onto the supported Ga droplets (ex situ). The in situ galvanic displacement reaction between Ga and Pt was studied in three different reaction media, namely propan-2-ol, water, and 20 vol% water containing propan-2-ol. TEM investigations reveal that the Ga-Pt reaction in propan-2-ol resulted in the formation of Pt aggregates on top of Ga nano-droplets. In the water/propan-2-ol mixture, the desired incorporation of Pt into the Ga matrix was achieved. The ex situ prepared Ga-Pt SCALMS were tested in n-heptane dehydrogenation. Ga-Pt SCALMS synthesized in pure alcoholic solution showed equal dehydrogenation and cracking activity. Ga-Pt SCALMS prepared in pure water, in contrast, showed mainly cracking activity due to oxidation of Ga droplets. The Ga-Pt SCALMS material prepared in water/propan-2-ol resulted in high activity, n-heptene selectivity of 63%, and only low cracking tendency. This can be attributed to the supported liquid Ga-Pt alloy where Pt atoms are present in the liquid Ga matrix at the highly dynamic catalytic interface.

3.
Commun Chem ; 6(1): 224, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853170

RESUMO

Gallium-rich supported catalytically active liquid metal solutions (SCALMS) were recently introduced as a new way towards heterogeneous single atom catalysis. SCALMS were demonstrated to exhibit a certain resistance against coking during the dehydrogenation of alkanes using Ga-rich alloys of noble metals. Here, the conceptual catalytic application of SCALMS in dry reforming of methane (DRM) is tested with non-noble metal (Co, Cu, Fe, Ni) atoms in the gallium-rich liquid alloy. This study introduces SCALMS to high-temperature applications and an oxidative reaction environment. Most catalysts were shown to undergo severe oxidation during DRM, while Ga-Ni SCALMS retained a certain level of activity. This observation is explained by a kinetically controlled redox process, namely oxidation to gallium oxide species and re-reduction via H2 activation over Ni. Consequentially, this redox process can be shifted to the metallic side when using increasing concentrations of Ni in Ga, which strongly suppresses coke formation. Density-functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations were performed to confirm the increased availability of Ni at the liquid alloy-gas interface. However, leaching of gallium via the formation of volatile oxidic species during the hypothesised redox cycles was identified indicating a critical instability of Ga-Ni SCALMS for prolonged test durations.

4.
Mater Horiz ; 10(11): 4960-4967, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37610262

RESUMO

A novel GaPt-based supported catalytically active liquid metal solution (SCALMS) material is developed by exploiting the suprabead concept: Supraparticles, i.e. micrometer-sized particles composed of nanoparticles assembled by spray-drying, are bonded to millimeter-sized beads. The suprabeads combine macroscale size with catalytic properties of nanoscale GaPt particles entrapped in their silica framework.

6.
Sci Rep ; 13(1): 4458, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932106

RESUMO

Isolated active sites have great potential to be highly efficient and stable in heterogeneous catalysis, while enabling low costs due to the low transition metal content. Herein, we present results on the synthesis, first catalytic trials, and characterization of the Ga9Rh2 phase and the hitherto not-studied Ga3Rh phase. We used XRD and TEM for structural characterization, and with XPS, EDX we accessed the chemical composition and electronic structure of the intermetallic compounds. In combination with catalytic tests of these phases in the challenging propane dehydrogenation and by DFT calculations, we obtain a comprehensive picture of these novel catalyst materials. Their specific crystallographic structure leads to isolated Rhodium sites, which is proposed to be the decisive factor for the catalytic properties of the systems.

7.
Anal Chem ; 95(6): 3204-3209, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36720470

RESUMO

We report an optofluidic method that enables to efficiently measure the enantiomeric excess of chiral molecules at low concentrations. The approach is to monitor the optical activity induced by a Kagome-lattice hollow-core photonic crystal fiber filled with a sub-µL volume of chiral compounds. The technique also allows monitoring the enzymatic racemization of R-mandelic acid.

8.
ACS Catal ; 12(9): 5661-5672, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35572184

RESUMO

The water gas shift reaction (WGSR) is catalyzed by supported ionic liquid phase (SILP) systems containing homogeneous Ru complexes dissolved in ionic liquids (ILs). These systems work at very low temperatures, that is, between 120 and 160 °C, as compared to >200 °C in the conventional process. To improve the performance of this ultra-low-temperature catalysis, we investigated the influence of various additives on the catalytic activity of these SILP systems. In particular, the application of methylene blue (MB) as an additive doubled the activity. Infrared spectroscopy measurements combined with density functional theory (DFT) calculations excluded a coordinative interaction of MB with the Ru complex. In contrast, state-of-the-art theoretical calculations elucidated the catalytic effect of the additives by non-covalent interactions. In particular, the additives can significantly lower the barrier of the rate-determining step of the reaction mechanism via formation of hydrogen bonds. The theoretical predictions, thereby, showed excellent agreement with the increase of experimental activity upon variation of the hydrogen bonding moieties in the additives investigated.

9.
Catal Sci Technol ; 11(23): 7535-7539, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34912539

RESUMO

Non-precious metal supported catalytically active liquid metal solutions exhibit attractive performance in ethylene oligomerization. It is found for the Ga-Ni system on silica that the performance depends strongly on the applied Ga/Ni ratio. Ga-rich systems forming liquid alloys exhibit a far higher Ni-based catalytic activity than solid intermetallic compounds or Ni nanoparticles.

10.
ACS Omega ; 6(43): 29192-29200, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34746608

RESUMO

Deracemizations are clearly preferable to kinetic resolutions in the production of chiral molecules from racemates, as they allow up to 100% chemical and optical yield. Here we present a new process route for multienzymatic deracemizations that is relevant for reaction systems with incompatible reaction conditions of the biocatalysts. This often applies to combinations of lipases used for stereoselective acylation and solvent-sensitive racemases. By encapsulating a model racemase in polymeric vesicles, it was protected from inactivation by the organic solvent up to phase proportions of 99%. As high yields in the lipase reaction required either water proportions well below 1% or racemase-denaturating acyl donor concentrations, a one-pot reaction was implemented through the sequential use of lipase and racemase-containing nanocompartments. This strategy allowed us to perform two kinetic resolutions with intermittent re-racemization in one pot yielding 72% (0.72 mM after 120 h) of an enantiopure product.

11.
ACS Catal ; 11(21): 13423-13433, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34777909

RESUMO

Supported catalytically active liquid metal solutions (SCALMS) of Pt in Ga (2 at.-% Pt) were studied in the temperature range of 500 to 600 °C for propane dehydrogenation. A facile synthesis procedure using ultrasonication was implemented and compared to a previously reported organo-chemical route for gallium deposition. The procedure was applied to synthesize GaPt-SCALMS catalyst on silica (SiO2), alumina (Al2O3), and silicon carbide (SiC) to investigate the effect of the support material on the catalytic performance. The SiC-based SCALMS catalyst showed the highest activity, while SiO2-based SCALMS showed the highest stability and lowest cracking tendency at higher temperatures. The selectivity toward propene for the SiO2-based catalyst remained above 93% at 600 °C. The catalysts were analyzed for coke content after use by temperature-programmed oxidation (TPO) and Raman spectroscopy. While the SiC- and SiO2-supported SCALMS systems showed hardly any coke formation, the Al2O3-supported systems suffered from pronounced coking. SEM-EDX analyses of the catalysts before and after reaction indicated that no perceivable morphological changes occur during reaction. The SCALMS catalysts under investigation are compared with supported Pt and supported GaPt solid-phase catalyst, and possible deactivation pathways are discussed.

12.
ACS Omega ; 6(32): 20956-20965, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34423203

RESUMO

Defined surface functionalities can control the properties of a material. The layer-by-layer method is an experimentally simple yet very versatile method to coat a surface with nanoscale precision. The method is widely used to either control the chemical properties of the surface via the introduction of functional moieties bound to the polymer or create nanoscale surface topographies if one polymeric species is replaced by a colloidal dispersion. Such roughness can enhance the stability of a liquid film on top of the surface by capillary adhesion. Here, we investigate whether a similar effect allows an increased retention of liquid films within a porous surface and thus potentially increases the stability of ionic liquid films infused within a porous matrix in the supported ionic liquid-phase catalysis. The complex geometry of the porous material, long diffusion pathways, and small sizes of necks connecting individual pores all contribute to difficulties to reliably coat the required porous materials. We optimize the coating process to ensure uniform surface functionalization via two steps. Diffusion limitations are overcome by force-wetting the pores, which transports the functional species convectively into the materials. Electrostatic repulsion, which can limit pore accessibility, is mitigated by the addition of electrolytes to screen charges. We introduce nanoscale topography in microscale porous SiC monoliths to enhance the retention of an ionic liquid film. We use γ-Al2O3 to coat monoliths and test the retention of 1-butyl-2,3-dimethylimidazolium chloride under exposure to a continuous gas stream, a setup commonly used in the water-gas shift reaction. Our study showcases that a hierarchical topography can improve the stability of impregnated ionic liquid films, with a potential advantage of improved supported ionic liquid-phase catalysis.

13.
Faraday Discuss ; 229: 359-377, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33666203

RESUMO

Supported liquid phase catalysis has great potential to unify the advantages from both homogeneous and heterogeneous catalysis. Recently, we reported supported catalytically active liquid metal solutions (SCALMS) as a new class of liquid phase catalysts. SCALMS enable high temperature application due to the high thermal stability of liquid metals when compared to supported molten salts or ionic liquids. The highly dynamic liquid metal/gas interface of SCALMS allows for catalysis over single atoms of an active metal atom within a matrix of liquid gallium. In the present study, kinetic data is acquired along the catalyst bed in a compact profile reactor during propane dehydrogenation (PDH) over gallium-platinum SCALMS. The reactor design allows for the analysis of the temperature and gas phase composition along the catalyst bed with a high spatial resolution using a sampling capillary inside the reactor. The concentration profiles suggest enhanced deactivation of the catalyst at the end of the bed with a deactivation front moving from the end to the beginning of the catalyst bed over time on stream. Only minor amounts of side products, formed via cracking of propane, were identified, supporting previously reported high selectivity of SCALMS during alkane dehydrogenation. The acquired data is supported by in situ high-resolution thermogravimetry coupled with mass spectrometry to monitor the activity and coking behaviour of SCALMS during PDH. The results strongly suggest an enhanced formation of coke over Al2O3-supported SCALMS when compared to using SiO2 as the support material.

14.
ChemCatChem ; 12(4): 1085-1094, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32194874

RESUMO

Supported Catalytically Active Liquid Metal Solutions (SCALMS) were recently described as a new class of heterogeneous catalysts, where the catalytic transformation takes place at the highly dynamic interface of a liquid alloy. Their application in alkane dehydrogenation has been claimed to be superior to classical heterogeneous catalysts, because the single atom nature of Rh dissolved in liquid Ga hinders the formation of significant amounts of coke, e. g. by oligomerisation of carbon fragments and excessive dehydrogenation. In the present study, we investigate the coking behaviour of Ga-Rh SCALMS during dehydrogenation of propane in detail by means of high-resolution thermogravimetry. We report that the application of Ga-Rh SCALMS indeed limits the formation of coke when compared to the Ga-free Rh catalyst, in particular when relating coke formation to the catalytic performance. Furthermore, the formed coke has been shown to be highly reactive during temperature programmed oxidation in 21 % O2/He with onset temperatures of approx. 150 °C enabling a regeneration of the Ga-Rh SCALMS system under mild conditions. The activation energy of the oxidation lies in the lower range of values reported for spent cracking catalysts. Monitoring the formation of coke and performance of SCALMS in situ via thermogravimetry coupled with mass spectrometry revealed the continuous formation of coke, which becomes the only process affecting the net weight change after a certain time on stream.

15.
RSC Adv ; 10(31): 18487-18495, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35517184

RESUMO

Monolithic silicon carbide supported ionic liquid-phase (SILP) Rh-catalysts have very recently been introduced for gas-phase hydroformylation as an important step toward industrial upscaling. This study investigates the monolithic catalyst system in combination with different impregnation procedures with non-invasive magnetic resonance imaging (MRI). The findings were supported by X-ray microtomography (micro-CT) data of the monolithic pore structure and a catalytic performance test of the catalyst system for 1-butene gas-phase hydroformylation. MRI confirmed a homogeneous impregnation of the liquid phase throughout the full cross-section of the cylindrical monoliths. Consistent impregnations from one side to the other of the monoliths were achieved with a stabilizer in the system that helped preventing inhomogeneous rim formation. External influences relevant for industrial application, such as long-term storage and temperature exposure, did not affect the homogeneous liquid-phase distribution of the catalyst. The work elucidates important parameters to improve liquid-phase catalyst impregnation to obtain efficient monolithic catalysts for industrial exploitation in gas-phase hydroformylation as well as other important industrial processes.

16.
RSC Adv ; 9(47): 27732-27742, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35529233

RESUMO

In times of depleting fossil fuel reserves, optimizing industrial catalytic reactions has become increasingly important. One possibility for optimization is the use of homogenous catalysts, which are advantageous over heterogeneous catalysts because of mild reaction conditions as well as higher selectivity and activity. A new emerging technology, supported ionic liquid phase (SILP), was developed to permanently immobilize homogeneous catalyst complexes for continuous processes. However, these SILP catalysts are unable to form freestanding supports by themselves. This study presents a new method to introduce the SILP system into a support made from multi-walled carbon nanotubes (MWCNT). In a first step, SILP catalysts were prepared for hydroformylation as well as low-temperature water-gas shift (WGS) reactions. These catalysts were integrated into freestanding microtubes formed from MWCNTs, with silica (for hydroformylation) or alumina particles (for WGS) incorporated. In hydroformylation, the activity increased significantly by around 400% when the pure MWCNT material was used as SILP support. An opposite trend was observed for WGS, where pure alumina particles exhibited the highest activity. A significant advantage of the MWCNT composite materials is the possibility to coat them with separation layers, which allows their application in membrane reactors for more efficient processes.

17.
ACS Catal ; 9(10): 9499-9507, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-32219008

RESUMO

Our contribution demonstrates that rhodium, an element that has barely been reported as an active metal for selective dehydrogenation of alkanes becomes a very active, selective, and robust dehydrogenation catalyst when exposed to propane in the form of single atoms at the interface of a solid-supported, highly dynamic liquid Ga-Rh mixture. We demonstrate that the transition to a fully liquid supported alloy droplet at Ga/Rh ratios above 80, results in a drastic increase in catalyst activity with high propylene selectivity. The combining results from catalytic studies, X-ray photoelectron spectroscopy, IR-spectroscopy under reaction conditions, microscopy, and density-functional theory calculations, we obtained a comprehensive microscopy picture of the working principle of the Ga-Rh supported catalytically active liquid metal solution.

18.
Angew Chem Int Ed Engl ; 58(3): 741-745, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30467935

RESUMO

Supported ionic liquid phase (SILP) catalysis enables a highly efficient, Ru-based, homogeneously catalyzed water-gas shift reaction (WGSR) between 100 °C and 150 °C. The active Ru-complexes have been found to exist in imidazolium chloride melts under operating conditions in a dynamic equilibrium, which is dominated by the [Ru(CO)3 Cl3 ]- complex. Herein we present state-of-the-art theoretical calculations to elucidate the reaction mechanism in more detail. We show that the mechanism includes the intermediate formation and degradation of hydrogen chloride, which effectively reduces the high barrier for the formation of the requisite dihydrogen complex. The hypothesis that the rate-limiting step involves water is supported by using D2 O in continuous catalytic WGSR experiments. The resulting mechanism constitutes a highly competitive alternative to earlier reported generic routes involving nucleophilic addition of hydroxide in the gas phase and in solution.

19.
Langmuir ; 34(23): 6894-6902, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29356538

RESUMO

In order to prepare lubricant-infused repellent coatings on silica nanostructures using low vapor pressure ionic liquids as lubricants, we study the wetting behavior of a set of imidazolium-based ionic liquids with different alkyl side chains as a function of the applied surface functionalities. We take advantage of the structural color of inverse opals prepared from a colloidal coassembly technique to study the infiltration of ionic liquids into these nanoporous structures. We find that the more hydrophobic ionic liquids with butyl and hexyl side chains can completely infiltrate inverse opals functionalized with mixed self-assembled monolayers composed of imidazole groups and aliphatic hydrocarbon chains, which we introduce via silane chemistry. These molecular species reflect the chemical nature of the ionic liquid, thereby increasing the affinity between the liquid and solid surface. The mixed surface chemistry provides sufficiently small contact angles with the ionic liquid to infiltrate the nanopores while maximizing the contact angle with water. As a result, the mixed monolayers enable the design of a stable ionic liquid/solid interface that is able to repel water as a test liquid. Our results underline the importance of matching chemical affinities to predict and control the wetting behavior in complex, multiphase systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA