Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 56(2): 333-339, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25373540

RESUMO

The RNA-guided Cas9 endonuclease specifically targets and cleaves DNA in a sequence-dependent manner and has been widely used for programmable genome editing. Cas9 activity is dependent on interactions with guide RNAs, and evolutionarily divergent Cas9 nucleases have been shown to work orthogonally. However, the molecular basis of selective Cas9:guide-RNA interactions is poorly understood. Here, we identify and characterize six conserved modules within native crRNA:tracrRNA duplexes and single guide RNAs (sgRNAs) that direct Cas9 endonuclease activity. We show the bulge and nexus are necessary for DNA cleavage and demonstrate that the nexus and hairpins are instrumental in defining orthogonality between systems. In contrast, the crRNA:tracrRNA complementary region can be modified or partially removed. Collectively, our results establish guide RNA features that drive DNA targeting by Cas9 and open new design and engineering avenues for CRISPR technologies.


Assuntos
Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Clivagem do DNA , DNA/química , Endonucleases/química , Engenharia Genética/métodos , RNA Guia de Cinetoplastídeos/química , Proteína 9 Associada à CRISPR , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células HEK293 , Humanos , Conformação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/ultraestrutura
2.
Proc Natl Acad Sci U S A ; 110(14): 5416-21, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23493562

RESUMO

RNA-binding proteins control the fate and function of the transcriptome in all cells. Here we present technology for isolating RNA-protein partners efficiently and accurately using an engineered clustered regularly interspaced short palindromic repeats (CRISPR) endoribonuclease. An inactive version of the Csy4 nuclease binds irreversibly to transcripts engineered with a 16-nt hairpin sequence at their 5' ends. Once immobilized by Csy4 on a solid support, contaminating proteins and other molecules can be removed by extensive washing. Upon addition of imidazole, Csy4 is activated to cleave the RNA, removing the hairpin tag and releasing the native transcript along with its specifically bound protein partners. This conditional Csy4 enzyme enables recovery of specific RNA-binding partners with minimal false-positive contamination. We use this method, coupled with quantitative MS, to identify cell type-specific human pre-microRNA-binding proteins. We also show that this technology is suitable for analyzing diverse size transcripts, and that it is suitable for adaptation to a high-throughput discovery format.


Assuntos
Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequências Repetidas Invertidas/genética , MicroRNAs/análise , Proteômica/métodos , Proteínas de Ligação a RNA/análise , Sequência de Bases , Western Blotting , Proteínas Associadas a CRISPR , Células HeLa , Humanos , Imidazóis , Espectrometria de Massas , MicroRNAs/genética , MicroRNAs/isolamento & purificação , Dados de Sequência Molecular , Engenharia de Proteínas/métodos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/isolamento & purificação , Análise de Sequência de RNA
3.
Nat Biotechnol ; 30(10): 1002-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22983090

RESUMO

Complex interactions among genetic components often result in variable systemic performance in designed multigene systems. Using the bacterial clustered regularly interspaced short palindromic repeat (CRISPR) pathway we develop a synthetic RNA-processing platform, and show that efficient and specific cleavage of precursor mRNA enables reliable and predictable regulation of multigene operons. Physical separation of linked genetic elements by CRISPR-mediated cleavage is an effective strategy to achieve assembly of promoters, ribosome binding sites, cis-regulatory elements, and riboregulators into single- and multigene operons with predictable functions in bacteria. We also demonstrate that CRISPR-based RNA cleavage is effective for regulation in bacteria, archaea and eukaryotes. Programmable RNA processing using CRISPR offers a general approach for creating context-free genetic elements and can be readily used in the bottom-up construction of increasingly complex biological systems in a plug-and-play manner.


Assuntos
Expressão Gênica , Engenharia Genética , Processamento Pós-Transcricional do RNA/genética , Escherichia coli/genética , Sequências Repetidas Invertidas/genética , Óperon/genética , Regiões não Traduzidas/genética
4.
EMBO J ; 31(12): 2824-32, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22522703

RESUMO

CRISPR-Cas adaptive immune systems protect prokaryotes against foreign genetic elements. crRNAs derived from CRISPR loci base pair with complementary nucleic acids, leading to their destruction. In Pseudomonas aeruginosa, crRNA biogenesis requires the endoribonuclease Csy4, which binds and cleaves the repetitive sequence of the CRISPR transcript. Biochemical assays and three co-crystal structures of wild-type and mutant Csy4/RNA complexes reveal a substrate positioning and cleavage mechanism in which a histidine deprotonates the ribosyl 2'-hydroxyl pinned in place by a serine, leading to nucleophilic attack on the scissile phosphate. The active site catalytic dyad lacks a general acid to protonate the leaving group and positively charged residues to stabilize the transition state, explaining why the observed catalytic rate constant is ∼10(4)-fold slower than that of RNase A. We show that this RNA cleavage step is essential for assembly of the Csy protein-crRNA complex that facilitates target recognition. Considering that Csy4 recognizes a single cellular substrate and sequesters the cleavage product, evolutionary pressure has likely selected for substrate specificity and high-affinity crRNA interactions at the expense of rapid cleavage kinetics.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endorribonucleases/química , Endorribonucleases/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/enzimologia , Estabilidade de RNA , RNA Bacteriano/metabolismo , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR , Domínio Catalítico , Cristalografia por Raios X , Endorribonucleases/genética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica , RNA Bacteriano/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo
5.
RNA ; 18(4): 661-72, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345129

RESUMO

Bacteria and archaea possess adaptive immune systems that rely on small RNAs for defense against invasive genetic elements. CRISPR (clustered regularly interspaced short palindromic repeats) genomic loci are transcribed as long precursor RNAs, which must be enzymatically cleaved to generate mature CRISPR-derived RNAs (crRNAs) that serve as guides for foreign nucleic acid targeting and degradation. This processing occurs within the repetitive sequence and is catalyzed by a dedicated Cas6 family member in many CRISPR systems. In Pseudomonas aeruginosa, crRNA biogenesis requires the endoribonuclease Csy4 (Cas6f), which binds and cleaves at the 3' side of a stable RNA stem-loop structure encoded by the CRISPR repeat. We show here that Csy4 recognizes its RNA substrate with an ~50 pM equilibrium dissociation constant, making it one of the highest-affinity protein:RNA interactions of this size reported to date. Tight binding is mediated exclusively by interactions upstream of the scissile phosphate that allow Csy4 to remain bound to its product and thereby sequester the crRNA for downstream targeting. Substrate specificity is achieved by RNA major groove contacts that are highly sensitive to helical geometry, as well as a strict preference for guanosine adjacent to the scissile phosphate in the active site. Collectively, our data highlight diverse modes of substrate recognition employed by Csy4 to enable accurate selection of CRISPR transcripts while avoiding spurious, off-target RNA binding and cleavage.


Assuntos
Endorribonucleases/metabolismo , Biocatálise , Ligação Proteica , Especificidade por Substrato
6.
Science ; 329(5997): 1355-8, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20829488

RESUMO

Many bacteria and archaea contain clustered regularly interspaced short palindromic repeats (CRISPRs) that confer resistance to invasive genetic elements. Central to this immune system is the production of CRISPR-derived RNAs (crRNAs) after transcription of the CRISPR locus. Here, we identify the endoribonuclease (Csy4) responsible for CRISPR transcript (pre-crRNA) processing in Pseudomonas aeruginosa. A 1.8 angstrom crystal structure of Csy4 bound to its cognate RNA reveals that Csy4 makes sequence-specific interactions in the major groove of the crRNA repeat stem-loop. Together with electrostatic contacts to the phosphate backbone, these enable Csy4 to bind selectively and cleave pre-crRNAs using phylogenetically conserved serine and histidine residues in the active site. The RNA recognition mechanism identified here explains sequence- and structure-specific processing by a large family of CRISPR-specific endoribonucleases.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endorribonucleases/química , Endorribonucleases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , Sequências Repetitivas de Ácido Nucleico , Substituição de Aminoácidos , Pareamento de Bases , Sequência de Bases , Proteínas Associadas a CRISPR , Cristalização , Cristalografia por Raios X , Genes Bacterianos , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Estrutura Terciária de Proteína , RNA Bacteriano/química , RNA Bacteriano/genética , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA