Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Sci Rep ; 13(1): 1482, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707606

RESUMO

Improving the cellular capacity of Chinese hamster ovary (CHO) cells to produce large amounts of therapeutic proteins remains a major challenge for the biopharmaceutical industry. In previous studies, we observed strong correlations between the performance of CHO cells and expression of two transcription factors (TFs), MYC and XBP1s. Here, we have evaluated the effective of overexpression of these two TFs on CHO cell productivity. To address this goal, we generated an EPO-producing cell line (CHOEPO) using a targeted integration approach, and subsequently engineered it to co-overexpress MYC and XBP1s (a cell line referred to as CHOCXEPO). Cells overexpressing MYC and XBP1s increased simultaneously viable cell densities and EPO production, leading to an enhanced overall performance in cultures. These improvements resulted from the individual effect of each TF in the cell behaviour (i.e., MYC-growth and XBP1s-productivity). An evaluation of the CHOCXEPO cells under different environmental conditions (temperature and media glucose concentration) indicated that CHOCXEPO cells increased cell productivity in high glucose concentration. This study showed the potential of combining TF-based cell engineering and process optimisation for increasing CHO cell productivity.


Assuntos
Glucose , Animais , Cricetinae , Proliferação de Células , Células CHO , Cricetulus , Proteínas Recombinantes/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo
2.
Pathogens ; 11(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36558888

RESUMO

Gammaherpesviruses, such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, are important human pathogens involved in lymphoproliferative disorders and tumorigenesis. Herpesvirus infections are characterized by a biphasic cycle comprised of an acute phase with lytic replication and a latent state. Murine gammaherpesvirus 68 (MHV-68) is a well-established model for the study of lytic and latent life cycles in the mouse. We investigated the interplay between the type I interferon (IFN)-mediated innate immune response and MHV-68 latency using sensitive bioluminescent reporter mice. Adoptive transfer of latently infected splenocytes into type I IFN receptor-deficient mice led to a loss of latency control. This was revealed by robust viral propagation and dissemination of MHV-68, which coincided with type I IFN reporter induction. Despite MHV-68 latency control by IFN, the continuous low-level cell-to-cell transmission of MHV-68 was detected in the presence of IFN signaling, indicating that IFN cannot fully prevent viral dissemination during latency. Moreover, impaired type I IFN signaling in latently infected splenocytes increased the risk of virus reactivation, demonstrating that IFN directly controls MHV-68 latency in infected cells. Overall, our data show that locally constrained type I IFN responses control the cellular reservoir of latency, as well as the distribution of latent infection to potential new target cells.

3.
Biosens Bioelectron ; 211: 114353, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594624

RESUMO

Microfluidics offers precise and dynamic control of microenvironments for the study of temporal cellular responses. However, recent research focusing solely on either homocellular (single-cell, population) or heterocellular response may yield insufficient output, which possibly leads to partial comprehension about the underlying mechanisms of signaling events and corresponding cellular behaviors. Here, a universal microfluidic approach is developed for integrated analysis of temporal signaling and cell migration dynamics in multiple cellular contexts (single-cell, population and coculture). This approach allows to confine the desired number or mixture of specific cell sample types in a single device. Precise single cell seeding was achieved manually with bidirectional controllability. Coupled with time-lapse imaging, temporal cellular responses can be observed with single-cell resolution. Using NIH3T3 cells stably expressing signal transducer and activator of transcription 1/2 (STAT1/2) activity biosensors, temporal STAT1/2 activation and cell migration dynamics were explored in isolated single cells, populations and cocultures stimulated with temporal inputs, such as single-pulse and continuous signals of interferon γ (IFNγ) or lipopolysaccharide (LPS). We demonstrate distinct dynamic responses of fibroblasts in different cellular contexts. Our presented approach facilitates a multi-dimensional understanding of STAT signaling and corresponding migration behaviors.


Assuntos
Técnicas Biossensoriais , Microfluídica , Animais , Movimento Celular , Camundongos , Microfluídica/métodos , Células NIH 3T3 , Transdução de Sinais
4.
Obesity (Silver Spring) ; 29(8): 1272-1278, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34314110

RESUMO

OBJECTIVE: Obesity is a major risk factor that increases morbidity and mortality upon infection. Although type I and type III interferon (IFN)-induced innate immune responses represent the first line of defense against viral infections, their functionality in the context of metabolic disorders remains largely obscure. This study aimed to investigate IFN responses upon respiratory viral infection in obese mice. METHODS: The activation of IFNs as well as IFN regulatory factors (IRFs) upon H3N2 influenza infection in mice upon high-fat-diet feeding was investigated. RESULTS: Influenza infection of obese mice was characterized by higher mortalities. In-depth analysis revealed impaired induction of both type I and type III IFNs as well as markedly reduced IFN responses. Notably, it was found that IRF7 gene expression in obese animals was reduced in homeostasis, and its induction by the virus was strongly attenuated. CONCLUSIONS: The results suggest that the attenuated IRF7 expression and induction are responsible for the reduced expression levels of type I and III IFNs and, thus, for the higher susceptibility and severity of respiratory infections in obese mice.


Assuntos
Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Animais , Humanos , Imunidade Inata , Interferons , Camundongos , Camundongos Obesos
5.
J Mol Med (Berl) ; 99(3): 425-438, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33484281

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumorigenic virus and the etiological agent of an endothelial tumor (Kaposi's sarcoma) and two B cell proliferative diseases (primary effusion lymphoma and multicentric Castleman's disease). While in patients with late stage of Kaposi's sarcoma the majority of spindle cells are KSHV-infected, viral copies are rapidly lost in vitro, both upon culture of tumor-derived cells or from newly infected endothelial cells. We addressed this discrepancy by investigating a KSHV-infected endothelial cell line in various culture conditions and in tumors of xenografted mice. We show that, in contrast to two-dimensional endothelial cell cultures, KSHV genomes are maintained under 3D cell culture conditions and in vivo. Additionally, an increased rate of newly infected cells was detected in 3D cell culture. Furthermore, we show that the PI3K/Akt/mTOR and ATM/γH2AX pathways are modulated and support an improved KSHV persistence in 3D cell culture. These mechanisms may contribute to the persistence of KSHV in tumor tissue in vivo and provide a novel target for KS specific therapeutic interventions. KEY MESSAGES: In vivo maintenance of episomal KSHV can be mimicked in 3D spheroid cultures 3D maintenance of KSHV is associated with an increased de novo infection frequency PI3K/Akt/mTOR and ATM/ γH2AX pathways contribute to viral maintenance.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Células Endoteliais/virologia , Herpesvirus Humano 8/fisiologia , Cultura de Vírus/métodos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Transformada , Doxiciclina/farmacologia , Células Endoteliais/citologia , Genoma Viral , Xenoenxertos , Histonas/fisiologia , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/fisiologia , Plasmídeos , Proteínas Proto-Oncogênicas c-akt/fisiologia , Sarcoma de Kaposi/virologia , Transdução de Sinais/fisiologia , Esferoides Celulares/transplante , Esferoides Celulares/virologia , Serina-Treonina Quinases TOR/fisiologia , Latência Viral , Liberação de Vírus , Replicação Viral
6.
ACS Synth Biol ; 10(1): 145-157, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33382574

RESUMO

The expression of endogenous genes as well as transgenes depends on regulatory elements within and surrounding genes as well as their epigenetic modifications. Members of a cloned cell population often show pronounced cell-to-cell heterogeneity with respect to the expression of a certain gene. To investigate the heterogeneity of recombinant protein expression we targeted cassettes into two preselected chromosomal hot-spots in Chinese hamster ovary (CHO) cells. Depending on the gene of interest and the design of the expression cassette, we found strong expression variability that could be reduced by epigenetic modifiers, but not by site-specific recruitment of the modulator dCas9-VPR. In particular, the implementation of ubiquitous chromatin opening elements (UCOEs) reduced cell-to-cell heterogeneity and concomitantly increased expression. The application of this method to recombinant antibody expression confirmed that rational design of cell lines for production of transgenes with predictable and high titers is a promising approach.


Assuntos
Anticorpos Monoclonais/biossíntese , Cromossomos/genética , Animais , Anticorpos Monoclonais/genética , Células CHO , Proteína 9 Associada à CRISPR/genética , Cricetinae , Cricetulus , Expressão Gênica , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Sequências Reguladoras de Ácido Nucleico/genética , Transgenes/genética
7.
Nucleic Acids Res ; 48(20): 11799-11811, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33137201

RESUMO

Mammalian first line of defense against viruses is accomplished by the interferon (IFN) system. Viruses have evolved numerous mechanisms to reduce the IFN action allowing them to invade the host and/or to establish latency. We generated an IFN responsive intracellular hub by integrating the synthetic transactivator tTA into the chromosomal Mx2 locus for IFN-based activation of tTA dependent expression modules. The additional implementation of a synthetic amplifier module with positive feedback even allowed for monitoring and reacting to infections of viruses that can antagonize the IFN system. Low and transient IFN amounts are sufficient to trigger these amplifier cells. This gives rise to higher and sustained-but optionally de-activatable-expression even when the initial stimulus has faded out. Amplification of the IFN response induced by IFN suppressing viruses is sufficient to protect cells from infection. Together, this interfaced sensor/actuator system provides a toolbox for robust sensing and counteracting viral infections.


Assuntos
Interferon Tipo I/metabolismo , Fenômenos Fisiológicos Virais , Animais , Células Cultivadas , Retroalimentação Fisiológica , Luciferases/análise , Camundongos , Vírus da Doença de Newcastle/fisiologia
8.
ACS Synth Biol ; 9(7): 1638-1649, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32551516

RESUMO

Key liver functions, including protein synthesis, carbohydrate metabolism, and detoxification, are performed by specific populations of hepatocytes that are defined by their relative positions within the liver lobules. On a molecular level, the functional heterogeneity with periportal and pericentral phenotypes, so-called metabolic liver zonation, is mainly established by a gradient of canonical Wnt signaling activity. Since the relevant physiological cues are missing in in vitro liver models, they fail to reflect the functional heterogeneity and thus lack many liver functions. We synthetically re-engineered Wnt signaling in murine and human hepatocytes using a doxycycline-dependent cassette for externally controlled digital expression of stabilized ß-catenin. Thereby, we achieved adjustable mosaic-like activation of Wnt signaling in in vitro-cultured hepatocytes that was resistant to negative-feedback loops. This allowed the establishment of long-term-stable periportal-like and pericentral-like phenotypes that mimic the heterogeneity observed in vivo. The in vitro-zonated hepatocytes show differential expression of drug-metabolizing enzymes and associated differential toxicity and higher levels of autophagy. Furthermore, recombinant adeno-associated virus and hepatitis C virus preferentially transduce the pericentral-like zonation phenotype, suggesting a bias of these viruses that has been unappreciated to date. These tightly controlled in vivo-like systems will be important for studies evaluating aspects of liver zonation and for the assessment of drug toxicity for mouse and man.


Assuntos
Engenharia Genética , Via de Sinalização Wnt/genética , Animais , Linhagem Celular , Dependovirus/genética , Regulação para Baixo/efeitos dos fármacos , Doxiciclina/farmacologia , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Hepacivirus/genética , Hepatócitos/citologia , Hepatócitos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Regulação para Cima/efeitos dos fármacos , beta Catenina/genética , beta Catenina/metabolismo
9.
PLoS Comput Biol ; 15(4): e1006944, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30973879

RESUMO

The best measure to limit spread of contagious diseases caused by influenza A viruses (IAVs) is annual vaccination. The growing global demand for low-cost vaccines requires the establishment of high-yield production processes. One possible option to address this challenge is the engineering of novel vaccine producer cell lines by manipulating gene expression of host cell factors relevant for virus replication. To support detailed characterization of engineered cell lines, we fitted an ordinary differential equation (ODE)-based model of intracellular IAV replication previously established by our group to experimental data obtained from infection studies in human A549 cells. Model predictions indicate that steps of viral RNA synthesis, their regulation and particle assembly and virus budding are promising targets for cell line engineering. The importance of these steps was confirmed in four of five single gene overexpression cell lines (SGOs) that showed small, but reproducible changes in early dynamics of RNA synthesis and virus release. Model-based analysis suggests, however, that overexpression of the selected host cell factors negatively influences specific RNA synthesis rates. Still, virus yield was rescued by an increase in the virus release rate. Based on parameter estimations obtained for SGOs, we predicted that there is a potential benefit associated with overexpressing multiple host cell genes in one cell line, which was validated experimentally. Overall, this model-based study on IAV replication in engineered cell lines provides a step forward in the dynamic and quantitative characterization of IAV-host cell interactions. Furthermore, it suggests targets for gene editing and indicates that overexpression of multiple host cell factors may be beneficial for the design of novel producer cell lines.


Assuntos
Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Vírus da Influenza A/fisiologia , Modelos Biológicos , Replicação Viral/fisiologia , Células A549 , Transporte Ativo do Núcleo Celular , Animais , Biologia Computacional , Simulação por Computador , Cães , Engenharia Genética , Genoma Viral , Humanos , Vírus da Influenza A/genética , Vacinas contra Influenza/biossíntese , Cinética , Células Madin Darby de Rim Canino , Replicação Viral/genética
10.
J Mol Med (Berl) ; 97(3): 311-324, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30610257

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), a tumor of endothelial origin predominantly affecting immunosuppressed individuals. Up to date, vaccines and targeted therapies are not available. Screening and identification of anti-viral compounds are compromised by the lack of scalable cell culture systems reflecting properties of virus-transformed cells in patients. Further, the strict specificity of the virus for humans limits the development of in vivo models. In this study, we exploited a conditionally immortalized human endothelial cell line for establishment of in vitro 2D and 3D KSHV latency models and the generation of KS-like xenograft tumors in mice. Importantly, the invasive properties and tumor formation could be completely reverted by purging KSHV from the cells, confirming that tumor formation is dependent on the continued presence of KSHV, rather than being a consequence of irreversible transformation of the infected cells. Upon testing a library of 260 natural metabolites, we selected the compounds that induced viral loss or reduced the invasiveness of infected cells in 2D and 3D endothelial cell culture systems. The efficacy of selected compounds against KSHV-induced tumor formation was verified in the xenograft model. Together, this study shows that the combined use of anti-viral and anti-tumor assays based on the same cell line is predictive for tumor reduction in vivo and therefore allows faithful selection of novel drug candidates against Kaposi's sarcoma. KEY MESSAGES: Novel 2D, 3D, and xenograft mouse models mimic the consequences of KSHV infection. KSHV-induced tumorigenesis can be reverted upon purging the cells from the virus. A 3D invasiveness assay is predictive for tumor reduction in vivo. Chondramid B, epothilone B, and pretubulysin D diminish KS-like lesions in vivo.


Assuntos
Antivirais/farmacologia , Células Endoteliais/virologia , Herpesvirus Humano 8/efeitos dos fármacos , Animais , Linhagem Celular , Humanos , Camundongos Knockout , Sarcoma de Kaposi/tratamento farmacológico
11.
J Control Release ; 294: 327-336, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30586597

RESUMO

Targeted delivery of drugs is a major challenge in treatment of diverse diseases. Systemically administered drugs demand high doses and are accompanied by poor selectivity and side effects on non-target cells. Here, we introduce a new principle for targeted drug delivery. It is based on macrophages as transporters for nanoparticle-coupled drugs as well as controlled release of drugs by hyperthermia mediated disruption of the cargo cells and simultaneous deliberation of nanoparticle-linked drugs. Hyperthermia is induced by an alternating electromagnetic field (AMF) that induces heat from silica-coated superparamagnetic iron oxide nanoparticles (SPIONs). We show proof-of-principle of controlled release by the simultaneous disruption of the cargo cells and the controlled, AMF induced release of a toxin, which was covalently linked to silica-coated SPIONs via a thermo-sensitive linker. Cells that had not been loaded with SPIONs remain unaffected. Moreover, in a 3D co-culture model we demonstrate specific killing of associated tumour cells when employing a ratio as low as 1:40 (SPION-loaded macrophage: tumour cells). Overall, our results demonstrate that AMF induced drug release from macrophage-entrapped nanoparticles is tightly controlled and may be an attractive novel strategy for targeted drug release.


Assuntos
Sistemas de Liberação de Medicamentos , Compostos Férricos/administração & dosagem , Hipertermia Induzida , Macrófagos , Maitansina/administração & dosagem , Nanopartículas/administração & dosagem , Dióxido de Silício/administração & dosagem , Animais , Linhagem Celular , Técnicas de Cocultura , Preparações de Ação Retardada/administração & dosagem , Liberação Controlada de Fármacos , Compostos Férricos/química , Humanos , Fenômenos Magnéticos , Camundongos , Modelos Biológicos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Dióxido de Silício/química
12.
Methods Mol Biol ; 1850: 43-55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30242679

RESUMO

Lentiviral gene transfer represents a versatile and powerful method for genetic transduction of many cell lines and primary cells including "hard-to-transfect" cells. As a consequence of the integration of the recombinant lentiviral vector into the cellular genome the transgene is stably maintained and long term producing cells are established. Here, we describe the current state of the art and give details for lab scale production of lentiviral vectors as well as for infection and titration of the viral vectors.


Assuntos
Vetores Genéticos/genética , Lentivirus/genética , Transdução Genética/métodos , Células HEK293 , Humanos , Regiões Promotoras Genéticas/genética , Transfecção/métodos
13.
Nat Commun ; 9(1): 994, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29520052

RESUMO

Fundamental research and drug development for personalized medicine necessitates cell cultures from defined genetic backgrounds. However, providing sufficient numbers of authentic cells from individuals poses a challenge. Here, we present a new strategy for rapid cell expansion that overcomes current limitations. Using a small gene library, we expanded primary cells from different tissues, donors, and species. Cell-type-specific regimens that allow the reproducible creation of cell lines were identified. In depth characterization of a series of endothelial and hepatocytic cell lines confirmed phenotypic stability and functionality. Applying this technology enables rapid, efficient, and reliable production of unlimited numbers of personalized cells. As such, these cell systems support mechanistic studies, epidemiological research, and tailored drug development.


Assuntos
Transgenes/genética , Animais , Linhagem Celular , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Lentivirus/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução Genética , Transgenes/fisiologia
14.
Front Immunol ; 8: 1302, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085367

RESUMO

Type I (α and ß) and type III (λ) interferons (IFNs) induce the expression of a large set of antiviral effector molecules via their respective surface membrane receptors. Whereas most cell types respond to type I IFN, type III IFN preferentially acts on epithelial cells and protects mucosal organs such as the lung and gastrointestinal tract. Despite the engagement of different receptor molecules, the type I and type III IFN-induced signaling cascade and upregulated gene profile is thought to be largely identical. Here, we comparatively analyzed the response of gut epithelial cells to IFN-ß and IFN-λ2 and identified a set of genes predominantly induced by IFN-λ2. We confirm the influence of epithelial cell polarization for enhanced type III receptor expression and demonstrate the induction of predominantly IFN-λ2-induced genes in the gut epithelium in vivo. Our results suggest that IFN-λ2 targets the epithelium and induces genes to adjust the antiviral host response to the requirements at mucosal body sites.

15.
Front Immunol ; 8: 1201, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29038654

RESUMO

Intrapulmonary immune reactions are impaired by the tolerogenic environment of the lung. This is manifested by the absence of effective endogenous T cell responses upon neoantigen expression. This tolerance is considered to contribute to lung cancer and inefficient immune therapeutic interventions. To investigate the mechanisms contributing to lung tolerance and to overcome these restrictions, we developed a transgenic mouse model with induction of a neoantigen (OVA) exclusively in alveolar type II epithelial cells. This model is characterized by the absence of functional endogenous T cell responses upon OVA neoantigen induction. Standard DNA and protein vaccination protocols resulted in the accumulation of high numbers of antigen-specific CD8 T cells in the lung. However, clearance of antigen-expressing cells was not achieved. To overcome this tolerance, we induced inflammatory conditions by coapplication of the TLR ligands LPS and CpG-ODN during intrapulmonary vaccinations. Both ligands induced high numbers of neoantigen-specific T cells in the lung. However, only coapplication of CpG-ODN was sufficient to establish functional cytotoxic responses resulting in the elimination of neoantigen presenting target cells. Remarkably, CpG-ODN was also crucial for functional memory responses upon re-induction of the neoantigen. The results highlight the need of TLR9 co-stimulation for overcoming tolerization, which might be a key factor for therapeutic interventions.

16.
Nucleic Acids Res ; 45(16): e147, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934472

RESUMO

Faithful expression of transgenes in cell cultures and mice is often challenged by locus dependent epigenetic silencing. We investigated silencing of Tet-controlled expression cassettes within the mouse ROSA26 locus. We observed pronounced DNA methylation of the Tet promoter concomitant with loss of expression in mES cells as well as in differentiated cells and transgenic animals. Strikingly, the ROSA26 promoter remains active and methylation free indicating that this silencing mechanism specifically affects the transgene, but does not spread to the host's chromosomal neighborhood. To reactivate Tet cassettes a synthetic fusion protein was constructed and expressed in silenced cells. This protein includes the enzymatic domains of ten eleven translocation methylcytosine dioxygenase 1 (TET-1) as well as the Tet repressor DNA binding domain. Expression of the synthetic fusion protein and Doxycycline treatment allowed targeted demethylation of the Tet promoter in the ROSA26 locus and in another genomic site, rescuing transgene expression in cells and transgenic mice. Thus, inducible, reversible and site-specific epigenetic modulation is a promising strategy for reactivation of silenced transgene expression, independent of the integration site.


Assuntos
Inativação Gênica , Regiões Promotoras Genéticas , Transgenes , Animais , Células Cultivadas , Metilação de DNA , Dioxigenases/genética , Dioxigenases/metabolismo , Células-Tronco Embrionárias/metabolismo , Loci Gênicos , Camundongos , Camundongos Transgênicos , RNA não Traduzido/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Ativação Transcricional
17.
Mol Ther ; 25(10): 2289-2298, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28716576

RESUMO

Immune defense against hepatotropic viruses such as hepatitis B (HBV) and hepatitis C (HCV) poses a major challenge for therapeutic approaches. Intrahepatic cytotoxic CD8 T cells that are crucial for an immune response against these viruses often become exhausted resulting in chronic infection. We elucidated the T cell response upon therapeutic vaccination in inducible transgenic mouse models in which variable percentages of antigen-expressing hepatocytes can be adjusted, providing mosaic antigen distribution and reflecting the varying viral antigen loads observed in patients. Vaccination-induced endogenous CD8 T cells could eliminate low antigen loads in liver but were functionally impaired if confronted with elevated antigen loads. Strikingly, only by conditioning the liver environment with TLR9 ligand prior and early after peripheral vaccination, successful immunization against high intrahepatic antigen density with its elimination was achieved. Moreover, TLR9 immunomodulation was also indispensable for functional memory recall after high frequency antigen challenge. Together, the results indicate that TLR9-mediated conditioning of liver environment during therapeutic vaccination or antigen reoccurrence is crucial for an efficacious intrahepatic T cell response.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Fígado/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Hepacivirus/patogenicidade , Hepatite B/imunologia , Hepatite B/metabolismo , Hepatite B/terapia , Vírus da Hepatite B/patogenicidade , Hepatite C/imunologia , Hepatite C/metabolismo , Hepatite C/terapia , Hepatócitos/virologia , Imunoterapia , Fígado/virologia , Ativação Linfocitária , Camundongos , Receptor Toll-Like 9/genética
18.
Front Immunol ; 8: 671, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659914

RESUMO

Type I and type III interferons (IFNs) are crucial components of the first-line antiviral host response. While specific receptors for both IFN types exist, intracellular signaling shares the same Jak-STAT pathway. Due to its receptor expression, IFN-λ responsiveness is restricted mainly to epithelial cells. Here, we display IFN-stimulated gene induction at the single cell level to comparatively analyze the activities of both IFN types in intestinal epithelial cells and mini-gut organoids. Initially, we noticed that the response to both types of IFNs at low concentrations is based on a single cell decision-making determining the total cell intrinsic antiviral activity. We identified histone deacetylase (HDAC) activity as a crucial restriction factor controlling the cell frequency of IFN-stimulated gene (ISG) induction upon IFN-λ but not IFN-ß stimulation. Consistently, HDAC blockade confers antiviral activity to an elsewise non-responding subpopulation. Second, in contrast to the type I IFN system, polarization of intestinal epithelial cells strongly enhances their ability to respond to IFN-λ signaling and raises the kinetics of gene induction. Finally, we show that ISG induction in mini-gut organoids by low amounts of IFN is characterized by a scattered heterogeneous responsiveness of the epithelial cells and HDAC activity fine-tunes exclusively IFN-λ activity. This study provides a comprehensive description of the differential response to type I and type III IFNs and demonstrates that cell polarization in gut epithelial cells specifically increases IFN-λ activity.

19.
Metabolism ; 69: 171-176, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28285647

RESUMO

AIM: Obesity is accompanied with systemic inflammation and pre-conditions to severe alterations in liver environment and functions. So far, it remains elusive to which extent obesity modulates immune responses during hepatotropic virus infections as well as in autoimmune hepatitis. In this study we investigated the influence of obesity on the intrahepatic immune response, in particular on the function of CD8 T cells as the crucial players in clearance of virus infected hepatocytes. METHODS: We established high fat induced obesity in transgenic mouse models with hepatocyte specific expression of a model antigen (Ova). We investigated the immune response upon adoptive transfer of antigen specific T cells and in mice with continuous thymic output of antigen specific T cells, mimicking the situations upon acute infection and autoimmunity, respectively. RESULTS: Irrespective of the metabolic condition, adoptive T cell transfer resulted in a transient hepatitis with no obvious differences concerning the acute T cell response. In the situation of autoimmunity, we observed a transient hepatitis in lean mice, whereas an extended hepatitis with a reduced antigen clearance capacity was found in obese mice. CONCLUSION: Our results demonstrate that obesity affects T cell function and increases the severity of autoimmune hepatitis while it has no impact on the acute T cell response.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Dieta , Hepatócitos/imunologia , Fígado/imunologia , Obesidade/imunologia , Transferência Adotiva , Animais , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/patologia , Dieta Hiperlipídica , Hepatócitos/patologia , Fígado/patologia , Testes de Função Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Obesidade/patologia , Ovalbumina/imunologia , Timo/citologia , Timo/imunologia
20.
J Biomed Mater Res B Appl Biomater ; 105(6): 1622-1635, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27153508

RESUMO

Magnesium alloys have promising mechanical and biological properties for the development of degradable implants. However, rapid implant corrosion and gas accumulations in tissue impede clinical applications. With time, the implant degradation rate is reduced by a highly biocompatible, phosphate-containing corrosion layer. To circumvent initial side effects after implantation it was attempted to develop a simple in vitro procedure to generate a similarly protective phosphate corrosion layer. To this end magnesium samples were pre-incubated in phosphate solutions. The resulting coating was well adherent during routine handling procedures. It completely suppressed the initial burst of corrosion and it reduced the average in vitro magnesium degradation rate over 56 days almost two-fold. In a small animal model phosphate coatings on magnesium implants were highly biocompatible and abrogated the appearance of gas cavities in the tissue. After implantation, the phosphate coating was replaced by a layer with an elemental composition that was highly similar to the corrosion layer that had formed on plain magnesium implants. The data demonstrate that a simple pre-treatment could improve clinically relevant properties of magnesium-based implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1622-1635, 2017.


Assuntos
Materiais Revestidos Biocompatíveis , Implantes Experimentais , Magnésio , Teste de Materiais , Fosfatos , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Corrosão , Feminino , Magnésio/química , Magnésio/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Fosfatos/química , Fosfatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA