Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 1192, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864052

RESUMO

The proliferation of seismic networks in Australia has laid the groundwork for high-resolution probing of the continental crust. Here we develop an updated 3D shear-velocity model using a large dataset containing nearly 30 years of seismic recordings from over 1600 stations. A recently-developed ambient noise imaging workflow enables improved data analysis by integrating asynchronous arrays across the continent. This model reveals fine-scale crustal structures at a lateral resolution of approximately 1-degree in most parts of the continent, highlighted by 1) shallow low velocities (<3.2 km/s) well correlated with the locations of known sedimentary basins, 2) consistently faster velocities beneath discovered mineral deposits, suggesting a whole-crustal control on the mineral deposition process, and 3) distinctive crustal layering and improved characterization of depth and sharpness of the crust-mantle transition. Our model sheds light on undercover mineral exploration and inspires future multi-disciplinary studies for a more comprehensive understanding of the mineral systems in Australia.

3.
Ground Water ; 56(2): 251-265, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28853137

RESUMO

We consider two sources of geology-related uncertainty in making predictions of the steady-state water table elevation for an unconfined aquifer. That is the uncertainty in the depth to base of the aquifer and in the hydraulic conductivity distribution within the aquifer. Stochastic approaches to hydrological modeling commonly use geostatistical techniques to account for hydraulic conductivity uncertainty within the aquifer. In the absence of well data allowing derivation of a relationship between geophysical and hydrological parameters, the use of geophysical data is often limited to constraining the structural boundaries. If we recover the base of an unconfined aquifer from an analysis of geophysical data, then the associated uncertainties are a consequence of the geophysical inversion process. In this study, we illustrate this by quantifying water table uncertainties for the unconfined aquifer formed by the paleochannel network around the Kintyre Uranium deposit in Western Australia. The focus of the Bayesian parametric bootstrap approach employed for the inversion of the available airborne electromagnetic data is the recovery of the base of the paleochannel network and the associated uncertainties. This allows us to then quantify the associated influences on the water table in a conceptualized groundwater usage scenario and compare the resulting uncertainties with uncertainties due to an uncertain hydraulic conductivity distribution within the aquifer. Our modeling shows that neither uncertainties in the depth to the base of the aquifer nor hydraulic conductivity uncertainties alone can capture the patterns of uncertainty in the water table that emerge when the two are combined.


Assuntos
Água Subterrânea , Movimentos da Água , Teorema de Bayes , Geologia , Austrália Ocidental
4.
Org Lett ; 15(21): 5586-9, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24144299

RESUMO

A tandem directed metalation has been successfully applied to the preparation of thieno[2,3-f]benzofuran-4,8-dione, providing an efficient and facile approach to symmetrically and unsymmetrically functionalize the thieno[2,3-f]benzofuran core at the 2,6 positions as well as to introduce the electron-withdrawing or -donating groups (EWG or EDG) at its 4,8 positions. The presence of various functional groups makes late-stage derivatization attainable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA