Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0280500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928497

RESUMO

A growing body of evidence suggests that spatial population structure can develop in marine species despite large population sizes and high gene flow. Characterizing population structure is important for the effective management of exploited species, as it can be used to identify appropriate scales of management in fishery and aquaculture contexts. The California sea cucumber, Apostichopus californicus, is one such exploited species whose management could benefit from further characterization of population structure. Using restriction site-associated DNA (RAD) sequencing, we developed 2075 single nucleotide polymorphisms (SNPs) to quantify genetic structure over a broad section of the species' range along the North American west coast and within the Salish Sea, a region supporting the Washington State A. californicus fishery and developing aquaculture production of the species. We found evidence for population structure (global fixation index (FST) = 0.0068) with limited dispersal driving two patterns of differentiation: isolation-by-distance and a latitudinal gradient of differentiation. Notably, we found detectable population differences among collection sites within the Salish Sea (pairwise FST = 0.001-0.006). Using FST outlier detection and gene-environment association, we identified 10.2% of total SNPs as putatively adaptive. Environmental variables (e.g., temperature, salinity) from the sea surface were more correlated with genetic variation than those same variables measured near the benthos, suggesting that selection on pelagic larvae may drive adaptive differentiation to a greater degree than selection on adults. Our results were consistent with previous estimates of and patterns in population structure for this species in other extents of the range. Additionally, we found that patterns of neutral and adaptive differentiation co-varied, suggesting that adaptive barriers may limit dispersal. Our study provides guidance to decision-makers regarding the designation of management units for A. californicus and adds to the growing body of literature identifying genetic population differentiation in marine species despite large, nominally connected populations.


Assuntos
Pepinos-do-Mar , Animais , Pepinos-do-Mar/genética , Genética Populacional , Análise de Sequência de DNA , Fluxo Gênico , Washington , Polimorfismo de Nucleotídeo Único
2.
Evol Appl ; 15(11): 1907-1924, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36426128

RESUMO

Patterns of genetic differentiation across the genome can provide insight into selective forces driving adaptation. We used pooled whole genome sequencing, gene annotation, and environmental covariates to evaluate patterns of genomic differentiation and to investigate mechanisms responsible for divergence among proximate Pacific cod (Gadus macrocephalus) populations from the Bering Sea and Aleutian Islands and more distant Washington Coast cod. Samples were taken from eight spawning locations, three of which were replicated to estimate consistency in allele frequency estimation. A kernel smoothing moving weighted average of relative divergence (F ST) identified 11 genomic islands of differentiation between the Aleutian Islands and Bering Sea samples. In some islands of differentiation, there was also elevated absolute divergence (d XY) and evidence for selection, despite proximity and potential for gene flow. Similar levels of absolute divergence (d XY) but roughly double the relative divergence (F ST) were observed between the distant Bering Sea and Washington Coast samples. Islands of differentiation were much smaller than the four large inversions among Atlantic cod ecotypes. Islands of differentiation between the Bering Sea and Aleutian Island were associated with SNPs from five vision system genes, which can be associated with feeding, predator avoidance, orientation, and socialization. We hypothesize that islands of differentiation between Pacific cod from the Bering Sea and Aleutian Islands provide evidence for adaptive differentiation despite gene flow in this commercially important marine species.

3.
Sci Rep ; 12(1): 13512, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933511

RESUMO

Phenological diversity in food resources prolongs foraging opportunities for consumers and buffers them against environmental disturbances. Such diversity is particularly important in forage fish such as Pacific herring (Clupea pallasii), which are foundational to coastal food webs and fisheries. While the importance of phenological diversity is well-known from contemporary studies, the extent to which different populations contribute to fisheries over long time scales is mostly unknown. In this study, we investigated the relative contributions of genetically and phenologically distinct herring populations to Indigenous Peoples' food systems over multiple centuries, using ancient DNA extracted from archaeological herring bones. These bones were excavated from two Coast Salish archaeological sites (Burton Acres Shell Midden and Bay Street Shell Midden) in the Puget Sound region, USA. Using genetic stock identification from seven nuclear DNA markers, we showed that catches at the two sites in central Puget Sound were dominated by January-February and March-April spawners, which are the contemporary spawning groups in the vicinity of the sites. However, May spawners were detected in the older Burton Acres assemblage (dated to 910-685 cal BP), and a mixed stock analysis indicated that catches at this site consisted of multiple populations. These results suggest that Coast Salish ancestors used a portfolio of herring populations and benefited from the ecological resource wave created by different spawning groups of herring. This study of ancient DNA allowed us to glimpse into Indigenous traditional food and management systems, and it enabled us to investigate long-term patterns of biodiversity in an ecologically important forage fish species.


Assuntos
DNA Antigo , Peixes , Animais , Pesqueiros , Peixes/genética , Cadeia Alimentar , Alimentos Marinhos
4.
Mol Ecol Resour ; 22(7): 2685-2700, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35569134

RESUMO

The Pacific halibut (Hippoglossus stenolepis) is a key species in the North Pacific Ocean and Bering Sea ecosystems, where it also supports important fisheries. However, the lack of genomic resources limits our understanding of evolutionary, environmental and anthropogenic forces affecting key life history characteristics of Pacific halibut and prevents the application of genomic tools in fisheries management and conservation efforts. In the present study, we report on the first generation of a high-quality chromosome-level assembly of the Pacific halibut genome, with an estimated size of 602 Mb, 24 chromosome-length scaffolds that contain 99.8% of the assembly and a N50 scaffold length of 27.3 Mb. In the first application of this important resource, we conducted genome-wide analyses of sex-specific genetic variation by pool sequencing and characterized a potential sex-determining region in chromosome 9 with a high density of female-specific SNPs. Within this region, we identified the bmpr1ba gene as a potential candidate for master sex-determining (MSD) gene. bmpr1ba is a member of the TGF-ß family that in teleosts has provided the largest number of MSD genes, including a paralogue of this gene in Atlantic herring. The genome assembly constitutes an essential resource for future studies on Pacific halibut population structure and dynamics, evolutionary history and responses to environmental and anthropogenic influences. Furthermore, the genomic location of the sex-determining region in Pacific halibut has been identified and a putative candidate MSD gene has been proposed, providing further support for the rapid evolution of sex-determining mechanisms in teleost fish.


Assuntos
Linguado , Animais , Cromossomos , Ecossistema , Feminino , Peixes/genética , Linguado/genética , Estudo de Associação Genômica Ampla , Genômica , Masculino
5.
Ecol Evol ; 12(1): e8474, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127016

RESUMO

Small and isolated peripheral populations, which are often remnants of glacial refugia, offer an opportunity to determine the magnitude and direction of fine-scale connectivity in high gene flow marine species. When located at the equatorial edge of a species' range, these populations may also harbor genetic diversity related to survival and reproduction at higher temperatures, a critical resource for marine species facing warming ocean temperatures. Pacific cod (Gadus macrocephalus), a marine fish in the North Pacific, has already experienced major shifts in biomass and distribution linked to climate change. We estimated the magnitude and direction of connectivity between peripheral populations of Pacific cod at the southern edge of the species' range, by conducting restriction site-associated DNA (RAD) sequencing and individual assignment on fish collected around the Korean Peninsula during the spawning season. Three populations on the western, eastern, and southern Korean coasts were highly differentiated (FST  = 0.025-0.042) and relatively small (Ne  = 433-1,777). Ten putative dispersers and estimates of contemporary migration rates revealed asymmetrical, west-to-east movement around the Korean Peninsula, at a higher rate than predicted by indirect estimates of connectivity (FST ). Allele frequencies at 87 RAD loci were decisively correlated with strong marine temperature gradients between the warmer southern coast and the cooler waters of the eastern and western coasts. Despite relatively small sample sizes, our data suggest asymmetrical dispersal and gene flow, potentially involving adaptive alleles, between peripheral populations inhabiting markedly different thermal regimes. Our study emphasizes the conservation value of peripheral populations in high gene flow marine fish species.

6.
Ecol Evol ; 11(23): 16661-16679, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938464

RESUMO

Genetic differentiation has been observed in marine species even when no obvious barriers to gene flow exist, and understanding such differentiation is essential for effective fisheries management. Highly differentiated outlier loci can provide information on how genetic variation might not only contribute to local adaptation but may also be affected by historical demographic events. A locus which aligned to a predicted zona pellucida sperm-binding protein 3 gene (ZP3) in Atlantic cod (Gadus morhua) was previously identified as the highest outlier based on F ST in a RADseq study of Pacific cod (Gadus macrocephalus) across the West Coast of North America. However, because of the limited length of the RAD sequence and restricted geographic area of sampling, no conclusion on the functional significance of the observed variation was possible. In other marine species, ZP3 is involved in reproductive isolation, local adaptation, and has neofunctionalized as an antifreeze gene, and so it may provide important insights in functional population structure of Pacific cod. Here, we sequenced a 544-bp region of ZP3 in 230 Pacific cod collected from throughout their geographic range. We observed striking patterns of spatial structuring of ZP3 haplotypes, with a sharp break near Kodiak, Alaska, USA where populations within ~200 km of each other are nearly fixed for different haplotypes, contrasting a pattern of isolation by distance at other genetic markers in this region (F ST = 0.003). Phylogenetic analysis of ZP3 haplotypes revealed that the more southern haplotypes appear to be ancestral, with the northern haplotype evolving more recently, potentially in response to a novel selective pressure as Pacific cod recolonized northern latitudes after glaciation. The sharp break in haplotype frequencies suggests strong selective pressures are operating on small spatial scales and illustrates that selection can create high divergence even in marine species with ample opportunities for gene flow.

7.
PLoS One ; 16(5): e0251976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043665

RESUMO

The diverse biology and ecology of marine organisms may lead to complex patterns of intraspecific diversity for both neutral and adaptive genetic variation. Sebastes mentella displays a particular life-history as livebearers, for which existence of multiple ecotypes has been suspected to complicate the genetic population structure of the species. Double digest restriction-site associated DNA was used to investigate genetic population structure in S. mentella and to scan for evidence of selection. In total, 42,288 SNPs were detected in 277 fish, and 1,943 neutral and 97 tentatively adaptive loci were selected following stringent filtration. Unprecedented levels of genetic differentiation were found among the previously defined 'shallow pelagic', 'deep pelagic' and 'demersal slope' ecotypes, with overall mean FST = 0.05 and 0.24 in neutral and outlier SNPs, respectively. Bayesian computation estimated a concurrent and historical divergence among these three ecotypes and evidence of local adaptation was found in the S. mentella genome. Overall, these findings imply that the depth-defined habitat divergence of S. mentella has led to reproductive isolation and possibly adaptive radiation among these ecotypes. Additional sub-structuring was detected within the 'shallow' and 'deep' pelagic ecotypes. Population assignment of individual fish showed more than 94% agreement between results based on SNP and previously generated microsatellite data, but the SNP data provided a lower estimate of hybridization among the ecotypes than that by microsatellite data. We identified a SNP panel with only 21 loci to discriminate populations in mixed samples based on a machine-learning algorithm. This first SNP based investigation clarifies the population structure of S. mentella, and provides novel and high-resolution genomic tools for future investigations. The insights and tools provided here can readily be incorporated into the management of S. mentella and serve as a template for other exploited marine species exhibiting similar complex life history traits.


Assuntos
Adaptação Fisiológica/genética , Especiação Genética , Genoma , Perciformes/genética , Polimorfismo de Nucleotídeo Único , Animais , Regiões Árticas , Oceano Atlântico , Teorema de Bayes , Ecótipo , Feminino , Genética Populacional , Aprendizado de Máquina , Masculino , Repetições de Microssatélites , Perciformes/classificação , Isolamento Reprodutivo
8.
Proc Biol Sci ; 288(1945): 20202398, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33622133

RESUMO

The timing of reproduction influences key evolutionary and ecological processes in wild populations. Variation in reproductive timing may be an especially important evolutionary driver in the marine environment, where the high mobility of many species and few physical barriers to migration provide limited opportunities for spatial divergence to arise. Using genomic data collected from spawning aggregations of Pacific herring (Clupea pallasii) across 1600 km of coastline, we show that reproductive timing drives population structure in these pelagic fish. Within a specific spawning season, we observed isolation by distance, indicating that gene flow is also geographically limited over our study area. These results emphasize the importance of considering both seasonal and spatial variation in spawning when delineating management units for herring. On several chromosomes, we detected linkage disequilibrium extending over multiple Mb, suggesting the presence of chromosomal rearrangements. Spawning phenology was highly correlated with polymorphisms in several genes, in particular SYNE2, which influences the development of retinal photoreceptors in vertebrates. SYNE2 is probably within a chromosomal rearrangement in Pacific herring and is also associated with spawn timing in Atlantic herring (Clupea harengus). The observed genetic diversity probably underlies resource waves provided by spawning herring. Given the ecological, economic and cultural significance of herring, our results support that conserving intraspecific genetic diversity is important for maintaining current and future ecosystem processes.


Assuntos
Ecossistema , Pesqueiros , Animais , Peixes/genética , Variação Genética , Reprodução
9.
Ecol Evol ; 10(17): 9522-9531, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32953080

RESUMO

The use of high-throughput, low-density sequencing approaches has dramatically increased in recent years in studies of eco-evolutionary processes in wild populations and domestication in commercial aquaculture. Most of these studies focus on identifying panels of SNP loci for a single downstream application, whereas there have been few studies examining the trade-offs for selecting panels of markers for use in multiple applications. Here, we detail the use of a bioinformatic workflow for the development of a dual-purpose SNP panel for parentage and population assignment, which included identifying putative SNP loci, filtering for the most informative loci for the two tasks, designing effective multiplex PCR primers, optimizing the SNP panel for performance, and performing quality control steps for downstream applications. We applied this workflow to two adjacent Alaskan Sockeye Salmon populations and identified a GTseq panel of 142 SNP loci for parentage and 35 SNP loci for population assignment. Only 50-75 panel loci were necessary for >95% accurate parentage, whereas population assignment success, with all 172 panel loci, ranged from 93.9% to 96.2%. Finally, we discuss the trade-offs and complexities of the decision-making process that drives SNP panel development, optimization, and testing.

10.
Sci Rep ; 10(1): 3961, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127567

RESUMO

Invasions by shell-boring polychaetes such as Polydora websteri Hartman have resulted in the collapse of oyster aquaculture industries in Australia, New Zealand, and Hawaii. These worms burrow into bivalve shells, creating unsightly mud blisters that are unappealing to consumers and, when nicked during shucking, release mud and detritus that can foul oyster meats. Recent findings of mud blisters on the shells of Pacific oysters (Crassostrea gigas Thunberg) in Washington State suggest a new spionid polychaete outbreak. To determine the identity of the polychaete causing these blisters, we obtained Pacific oysters from two locations in Puget Sound and examined them for blisters and burrows caused by polychaete worms. Specimens were also obtained from eastern oysters (Crassostrea virginica Gmelin) collected in New York for morphological and molecular comparison. We compared polychaete morphology to original descriptions, extracted DNA and sequenced mitochondrial (cytochrome c oxidase I [mtCOI]) and nuclear (small subunit 18S rRNA [18S rRNA]) genes to determine a species-level molecular identification for these worms. Our data show that Polydora websteri are present in the mud blisters from oysters grown in Puget Sound, constituting the first confirmed record of this species in Washington State. The presence of this notorious invader could threaten the sustainability of oyster aquaculture in Washington, which currently produces more farmed bivalves than any other US state.


Assuntos
Crassostrea/parasitologia , Poliquetos/classificação , Poliquetos/genética , Exoesqueleto/parasitologia , Animais , Bases de Dados de Ácidos Nucleicos , New York , Filogenia , RNA Ribossômico 18S/genética , Washington
11.
Evol Appl ; 13(2): 362-375, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31993082

RESUMO

Poleward species range shifts have been predicted to result from climate change, and many observations have confirmed such movement. Poleward shifts may represent a homogeneous shift in distribution, seasonal northward movement of specific populations, or colonization processes at the poleward edge of the distribution. The ecosystem of the Bering Sea has been changing along with the climate, moving from an arctic to a subarctic system. Several fish species have been observed farther north than previously reported and in increasing abundances. We examined one of these fish species, Pacific cod, in the northern Bering Sea (NBS) to assess whether they migrated from another stock in the eastern Bering Sea (EBS), Gulf of Alaska, or Aleutian Islands, or whether they represent a separate population. Genetic analyses using 3,599 single nucleotide polymorphism markers indicated that nonspawning cod collected in August 2017 in the NBS were similar to spawning stocks of cod in the EBS. This result suggests escalating northward movement of the large EBS stock during summer months. Whether the cod observed in the NBS migrate south during winter to spawn or remain in the NBS as a sink population is unknown.

12.
Mol Ecol Resour ; 19(5): 1131-1143, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30561168

RESUMO

Wild specimens are often collected in challenging field conditions, where samples may be contaminated with the DNA of conspecific individuals. This contamination can result in false genotype calls, which are difficult to detect, but may also cause inaccurate estimates of heterozygosity, allele frequencies and genetic differentiation. Marine broadcast spawners are especially problematic, because population genetic differentiation is low and samples are often collected in bulk and sometimes from active spawning aggregations. Here, we used contaminated and clean Pacific herring (Clupea pallasi) samples to test (a) the efficacy of bleach decontamination, (b) the effect of decontamination on RAD genotypes and (c) the consequences of contaminated samples on population genetic analyses. We collected fin tissue samples from actively spawning (and thus contaminated) wild herring and nonspawning (uncontaminated) herring. Samples were soaked for 10 min in bleach or left untreated, and extracted DNA was used to prepare DNA libraries using a restriction site-associated DNA (RAD) approach. Our results demonstrate that intraspecific DNA contamination affects patterns of individual and population variability, causes an excess of heterozygotes and biases estimates of population structure. Bleach decontamination was effective at removing intraspecific DNA contamination and compatible with RAD sequencing, producing high-quality sequences, reproducible genotypes and low levels of missing data. Although sperm contamination may be specific to broadcast spawners, intraspecific contamination of samples may be common and difficult to detect from high-throughput sequencing data and can impact downstream analyses.


Assuntos
Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Contaminação por DNA , Peixes/classificação , Peixes/genética , Genética Populacional/métodos , Técnicas de Genotipagem/métodos , Animais , Genótipo , Manejo de Espécimes/métodos
13.
Evol Appl ; 11(8): 1448-1464, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30151052

RESUMO

The discernment of populations as management units is a fundamental prerequisite for sustainable exploitation of species. A lack of clear stock boundaries complicates not only the identification of spatial management units, but also the assessment of mixed fisheries by population assignment and mixed stock analysis. Many marine species, such as Pacific cod, are characterized by isolation by distance, showing significant differentiation but no clear stock boundaries. Here, we used restriction-site-associated DNA (RAD) sequencing to investigate population structure and assess power to genetically assign Pacific cod to putative populations of origin. Samples were collected across the species range in the eastern Pacific Ocean, from the Salish Sea to the Aleutian Islands. A total of 6,425 putative biallelic single nucleotide polymorphisms were identified from 276 individuals. We found a strong isolation-by-distance signal along coastlines that mirrored previous microsatellite results and pronounced genetic differentiation between coastal samples and those from the inland waters of the Salish Sea, with no evidence for hybridization between these two populations. Individual assignment success based on two methods was high overall (≥84%) but decreased from south to north. Assignment to geographic location of origin also was successful, with average distance between capture and assignment location of 220 km. Outlier analyses identified more loci potentially under selection along the coast than between Salish Sea and coastal samples, suggesting more diverse adaptation to latitudinal environmental factors than inshore vs. offshore environments. Our results confirm previous observations of sharp genetic differentiation of the Salish Sea population and isolation by distance along the coast, but also highlight the feasibility of using modern genomic techniques to inform stock boundaries and fisheries management in a low FST marine species.

14.
Proc Natl Acad Sci U S A ; 115(19): 4945-4950, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29674450

RESUMO

Genetic data are commonly used to estimate connectivity between putative populations, but translating them to demographic dispersal rates is complicated. Theoretical equations that infer a migration rate based on the genetic estimator FST , such as Wright's equation, FST ≈ 1/(4Nem + 1), make assumptions that do not apply to most real populations. How complexities inherent to real populations affect migration was exemplified by Atlantic cod in the North Sea and Skagerrak and was examined within an age-structured model that incorporated genetic markers. Migration was determined under various scenarios by varying the number of simulated migrants until the mean simulated level of genetic differentiation matched a fixed level of genetic differentiation equal to empirical estimates. Parameters that decreased the Ne /Nt ratio (where Ne is the effective and Nt is the total population size), such as high fishing mortality and high fishing gear selectivity, increased the number of migrants required to achieve empirical levels of genetic differentiation. Higher maturity-at-age and lower selectivity increased Ne /Nt and decreased migration when genetic differentiation was fixed. Changes in natural mortality, fishing gear selectivity, and maturity-at-age within expected limits had a moderate effect on migration when genetic differentiation was held constant. Changes in population size had the greatest effect on the number of migrants to achieve fixed levels of FST , particularly when genetic differentiation was low, FST ≈ 10-3 Highly variable migration patterns, compared with constant migration, resulted in higher variance in genetic differentiation and higher extreme values. Results are compared with and provide insight into the use of theoretical equations to estimate migration among real populations.


Assuntos
Migração Animal , Gadus morhua/genética , Variação Genética , Modelos Genéticos , Seleção Genética , Animais , Feminino , Masculino
15.
PLoS One ; 13(3): e0194068, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566070

RESUMO

Interspecific hybridization is often seen as a major conservation issue, potentially threatening endangered species and decreasing biodiversity. In natural populations, the conservation implications of hybridization depends on both on anthropogenic factors and the evolutionary processes maintaining the hybrid zone. However, the timeline and patterns of hybridization in the hybrid zone are often not known. Therefore, species conservation becomes a concern when recent anthropogenic changes influence hybridization and not if hybridization is part of a long-term process. Here, we use sequence data from one mitochondrial gene, three nuclear introns and one nuclear exon to estimate the direction, geographic extent, frequency and possible timeline of hybridization between three rockfish species (Sebastes auriculatus, S. caurinus, S. maliger) in the Salish Sea, Washington, USA. We show that (i) introgression occurred much more frequently in the Salish Sea than on the outer coast, (ii) introgression was highly asymmetrical from S. maliger into the other two species, (iii) almost 40% of individuals in the Salish Sea were hybrids, with frequency of hybrids increasing with isolation from the coast, and (iv) all hybrids were later generation backcrosses rather than F1 hybrids. Our results suggest long-standing low-level hybridization rather than recent onset of interbreeding because of human induced environmental change, possibly facilitated by specific environmental conditions in the sub-basins of the Salish Sea, and by differences in population sizes during recolonization of the area after the last glaciation. This rockfish hybrid system, with asymmetrical introgression and the maintenance of parental species, may prove useful to study both mechanisms that maintain species boundaries and that facilitate speciation in the presence of rapid environmental change.


Assuntos
Perciformes/genética , Animais , Evolução Biológica , DNA Mitocondrial/genética , Ecossistema , Espécies em Perigo de Extinção , Éxons/genética , Hibridização Genética/genética , Íntrons/genética , Oceano Pacífico , Washington
16.
J Hered ; 109(3): 326-332, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29136178

RESUMO

Understanding and identifying the genetic mechanisms responsible for sex-determination are important for species management, particularly in exploited fishes where sex biased harvest could have implications on population dynamics and long-term persistence. The Pacific halibut (Hippoglossus stenolepis) supports important fisheries in the North Pacific Ocean. The proportion of each sex in the annual harvest is currently estimated using growth curves, but genetic techniques may provide a more accurate method. We used restriction-site associated DNA (RAD) sequencing to identify RAD-tags that were linked to genetic sex, based on differentiation (FST) between the sexes. Identified RAD-tags were aligned to the Atlantic halibut (Hippoglossus hippoglossus) linkage map, the turbot (Scophthalmus maximus) genome, and the half-smooth tongue sole (Cynoglossus semilaevis) genome to identify genomic regions that may be involved in sex determination. In total, 56 RAD-tags (70 single nucleotide polymorphisms) were linked to sex, and 3 RAD-tags were identified in only females. Sex-linked loci aligned to 3 linkage groups in the Atlantic halibut (LG07: 7 loci, LG15: 1 locus, and LG24: 1 locus), 3 chromosomes in the turbot (LG12: 13 loci, LG01: 1 locus, and LG05: 1 locus), and 1 chromosome in the half-smooth tongue sole (ChrZ: 9 loci). Results add support to the hypothesis that Pacific halibut genetic sex is determined in a ZW system. Two sex-linked loci were further developed into sex identification assays, and their efficacy was tested on individuals that had been morphologically sexed. The accuracy of each assay on its own was 97.5% compared to morphological sex.


Assuntos
Linguado/genética , Polimorfismo de Nucleotídeo Único , Animais , Feminino , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Oceano Pacífico , Análise para Determinação do Sexo/métodos
17.
Evol Appl ; 10(1): 77-90, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28035237

RESUMO

Genetic population structure is often used to identify management units in exploited species, but the extent of genetic differentiation may be inflated by geographic variation in the level of hybridization between species. We identify the genetic population structure of Sebastes mentella and investigate possible introgression within the genus by analyzing 13 microsatellites in 2,562 redfish specimens sampled throughout the North Atlantic. The data support an historical divergence between the "shallow" and "deep" groups, beyond the Irminger Sea where they were described previously. A third group, "slope," has an extended distribution on the East Greenland Shelf, in addition to earlier findings on the Icelandic slope. Furthermore, S. mentella from the Northeast Arctic and Northwest Atlantic waters are genetically different populations. In both areas, interspecific introgression may influence allele frequency differences among populations. Evidence of introgression was found for almost all the identified Sebastes gene pools, but to a much lower extent than suggested earlier. Greenland waters appear to be a sympatric zone for many of the genetically independent Sebastes groups. This study illustrates that the identified groups maintain their genetic integrity in this region despite introgression.

18.
PLoS One ; 11(8): e0160655, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27504892

RESUMO

Population attributes such as diversity, connectivity, and structure are important components of understanding species persistence and vulnerability to extinction. Hyla wrightorum, the Arizona treefrog, is native to the southwestern United States and Mexico, and an isolated group of populations exists in the Huachuca Mountains and Canelo Hills (HMCH) of southeastern Arizona, USA. Due to concerns about declining observations of the species within the isolated HMCH portion of its range, the HMCH group is currently a candidate for federal protection under the U.S. Endangered Species Act. We present results of a genetic study examining population diversity, structure, and connectivity within the HMCH region. We sampled DNA from H. wrightorum larvae and adults from ten distinct locations, 8 of which were breeding sites and 4 of which were previously undescribed localities for the species. We developed and genotyped 17 polymorphic microsatellite loci and quantified genetic diversity, population differentiation, and landscape influences on population genetic structure. We found evidence of larger than expected effective population sizes, significant genetic differentiation between populations, and evidence of distance being the primary driver of genetic structure of populations with some influence of slope and canopy cover. We found little evidence of recent genetic bottlenecks, and individual-based analyses indicate admixture between populations despite significant genetic differentiation. These patterns may indicate that the breeding sites within the Huachuca Mountains constitute a metapopulation. We suggest that the HMCH region may contain larger and more connected breeding populations than previously understood, but the dynamics of this system and the limited geographic extent of the HMCH group justify current concern for the persistence of the species in this region. Efforts to ensure availability of high-quality breeding habitats and control for local threats such as effects of invasive predators may be critical to the persistence of these unique populations of H. wrightorum.


Assuntos
Anuros/genética , Animais , Cruzamento , Fluxo Gênico , Variação Genética , Geografia , Dinâmica Populacional , Simpatria/genética
19.
PLoS One ; 10(10): e0141373, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26485525

RESUMO

Hybridization creates novel gene combinations that may generate important evolutionary novelty, but may also reduce existing adaptation by interrupting inherent biological processes, such as genotype-environment interactions. Hybridization often causes substantial change in patterns of gene expression, which, in turn, may cause phenotypic change. Rainbow trout (Oncorhynchus mykiss) and cutthroat trout (O. clarkii) produce viable hybrids in the wild, and introgressive hybridization with introduced rainbow trout is a major conservation concern for native cutthroat trout. The two species differ in body shape, which is likely an evolutionary adaptation to their native environments, and their hybrids tend to show intermediate morphology. The characterization of gene expression patterns may provide insights on the genetic basis of hybrid and parental morphologies, as well as on the ecological performance of hybrids in the wild. Here, we evaluated the expression of eight growth-related genes (MSTN-1a, MSTN-1b, MyoD1a, MyoD1b, MRF-4, IGF-1, IGF-2, and CAST-L) and the relationship of these genes with growth traits (length, weight, and condition factor) in six line crosses: both parental species, both reciprocal F1 hybrids, and both first-generation backcrosses (F1 x rainbow trout and F1 x cutthroat trout). Four of these genes were differentially expressed among rainbow, cutthroat, and their hybrids. Transcript abundance was significantly correlated with growth traits across the parent species, but not across hybrids. Our findings suggest that rainbow and cutthroat trout exhibit differences in muscle growth regulation, that transcriptional networks may be modified by hybridization, and that hybridization disrupts intrinsic relationships between gene expression and growth patterns that may be functionally important for phenotypic adaptations.


Assuntos
Cruzamentos Genéticos , Proteínas de Peixes/genética , Hibridização Genética , Músculos/citologia , Músculos/metabolismo , Oncorhynchus/crescimento & desenvolvimento , Oncorhynchus/genética , Animais , Evolução Molecular , Perfilação da Expressão Gênica , Oncorhynchus/classificação , Fenótipo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Evol Appl ; 8(5): 486-509, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26029262

RESUMO

Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a 'seascape genetics' approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA