Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Gut Microbes ; 16(1): 2359500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825783

RESUMO

The gut microbiota has been implicated as a driver of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Recently we described, mucosal biofilms, signifying alterations in microbiota composition and bile acid (BA) metabolism in IBS and ulcerative colitis (UC). Luminal oxygen concentration is a key factor in the gastrointestinal (GI) ecosystem and might be increased in IBS and UC. Here we analyzed the role of archaea as a marker for hypoxia in mucosal biofilms and GI homeostasis. The effects of archaea on microbiome composition and metabolites were analyzed via amplicon sequencing and untargeted metabolomics in 154 stool samples of IBS-, UC-patients and controls. Mucosal biofilms were collected in a subset of patients and examined for their bacterial, fungal and archaeal composition. Absence of archaea, specifically Methanobrevibacter, correlated with disrupted GI homeostasis including decreased microbial diversity, overgrowth of facultative anaerobes and conjugated secondary BA. IBS-D/-M was associated with absence of archaea. Presence of Methanobrevibacter correlated with Oscillospiraceae and epithelial short chain fatty acid metabolism and decreased levels of Ruminococcus gnavus. Absence of fecal Methanobrevibacter may indicate a less hypoxic GI environment, reduced fatty acid oxidation, overgrowth of facultative anaerobes and disrupted BA deconjugation. Archaea and Ruminococcus gnavus could distinguish distinct subtypes of mucosal biofilms. Further research on the connection between archaea, mucosal biofilms and small intestinal bacterial overgrowth should be performed.


Assuntos
Archaea , Bactérias , Biofilmes , Fezes , Microbioma Gastrointestinal , Humanos , Biofilmes/crescimento & desenvolvimento , Archaea/classificação , Archaea/metabolismo , Archaea/genética , Archaea/isolamento & purificação , Adulto , Pessoa de Meia-Idade , Feminino , Masculino , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Fezes/microbiologia , Colo/microbiologia , Methanobrevibacter/metabolismo , Methanobrevibacter/genética , Methanobrevibacter/crescimento & desenvolvimento , Methanobrevibacter/isolamento & purificação , Colite Ulcerativa/microbiologia , Colite Ulcerativa/metabolismo , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/metabolismo , Idoso , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Íleo/microbiologia , Ácidos Graxos Voláteis/metabolismo , Adulto Jovem , Ácidos e Sais Biliares/metabolismo
2.
J Periodontol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696461

RESUMO

BACKGROUND: Gingivitis is the most common form of periodontal disease among children and adolescents and is associated with disrupted host-microbiome homeostasis. Family is an important factor influencing the prevalence of gingivitis. In the present study, we investigated the salivary microbiome, oral hygiene habits, and the salivary level of myeloid-related protein (MRP)-8/14 in children aged 7-12 years with gingivitis, periodontally healthy children, and their mothers. METHODS: This study included 24 children with gingivitis (including four sibling pairs) and 22 periodontally healthy children (including two sibling pairs) and their mothers. The whole saliva was collected, DNA was extracted, the variable V3-V4 region of the eubacterial 16S ribosomal RNA gene was amplified, and sample library preparation was performed according to the Illumina protocol. The salivary levels of MRP-8/14 were analyzed by ELISA. RESULTS: Alpha diversity of the salivary microbiome was considerably higher in gingivitis children and mothers of gingivitis children compared to healthy children and their mothers, respectively. Significant differences in beta diversity between healthy and gingivitis children, healthy children and their mothers, and gingivitis children and their mothers were detected. Overall, the number of common core amplicon sequence variants between children and their own mothers was significantly higher than between children and other mothers. The salivary MRP-8/14 levels in children with gingivitis were significantly higher compared to healthy children; a similar tendency was also mentioned for mothers. CONCLUSION: Our study underlines the importance of family as an essential factor influencing oral health.

3.
BMC Biol ; 22(1): 112, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745290

RESUMO

BACKGROUND: Fungi and ants belong to the most important organisms in terrestrial ecosystems on Earth. In nutrient-poor niches of tropical rainforests, they have developed steady ecological relationships as a successful survival strategy. In tropical ant-plant mutualisms worldwide, where resident ants provide the host plants with defense and nutrients in exchange for shelter and food, fungi are regularly found in the ant nesting space, inhabiting ant-made dark-colored piles ("patches"). Unlike the extensively investigated fungus-growing insects, where the fungi serve as the primary food source, the purpose of this ant-fungi association is less clear. To decipher the roles of fungi in these structures within ant nests, it is crucial to first understand the dynamics and drivers that influence fungal patch communities during ant colony development. RESULTS: In this study, we investigated how the ant colony age and the ant-plant species affect the fungal community in the patches. As model we selected one of the most common mutualisms in the Tropics of America, the Azteca-Cecropia complex. By amplicon sequencing of the internal transcribed spacer 2 (ITS2) region, we analyzed the patch fungal communities of 93 Azteca spp. colonies inhabiting Cecropia spp. trees. Our study demonstrates that the fungal diversity in patches increases as the ant colony grows and that a change in the prevalent fungal taxa occurs between initial and established patches. In addition, the ant species significantly influences the composition of the fungal community in established ant colonies, rather than the host plant species. CONCLUSIONS: The fungal patch communities become more complex as the ant colony develops, due to an acquisition of fungi from the environment and a substrate diversification. Our results suggest a successional progression of the fungal communities in the patches during ant colony growth and place the ant colony as the main driver shaping such communities. The findings of this study demonstrate the unexpectedly complex nature of ant-plant mutualisms in tropical regions at a micro scale.


Assuntos
Formigas , Fungos , Micobioma , Simbiose , Formigas/microbiologia , Formigas/fisiologia , Animais , Fungos/genética , Fungos/fisiologia , Fungos/classificação , Cecropia/microbiologia , Mirmecófitas
4.
ISME J ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676557

RESUMO

Ammonia-oxidising archaea and nitrite-oxidising bacteria are common members of marine sponge microbiomes. They derive energy for carbon fixation and growth from nitrification - the aerobic oxidation of ammonia to nitrite and further to nitrate - and are proposed to play essential roles in the carbon and nitrogen cycling of sponge holobionts. In this study, we characterise two novel nitrifying symbiont lineages, Candidatus Nitrosokoinonia and Candidatus Nitrosymbion in the marine sponge Coscinoderma matthewsi using a combination of molecular tools, in situ visualisation, and physiological rate measurements. Both represent a new genus in the ammonia-oxidising archaeal class Nitrososphaeria and the nitrite-oxidising bacterial order Nitrospirales, respectively. Furthermore, we show that larvae of this viviparous sponge are densely colonised by representatives of Ca. Nitrosokoinonia and Ca. Nitrosymbion indicating vertical transmission. In adults, the representatives of both symbiont genera are located extracellularly in the mesohyl. Comparative metagenome analyses and physiological data suggest that ammonia-oxidising archaeal symbionts of the genus Ca. Nitrosokoinonia strongly rely on endogenously produced nitrogenous compounds (i.e., ammonium, urea, nitriles/cyanides, and creatinine) rather than on exogenous ammonium sources taken up by the sponge. Additionally, the nitrite-oxidising bacterial symbionts of the genus Ca. Nitrosymbion may reciprocally support the ammonia-oxidisers with ammonia via the utilisation of sponge-derived urea and cyanate. Comparative analyses of published environmental 16S rRNA gene amplicon data revealed that Ca. Nitrosokoinonia and Ca. Nitrosymbion are widely distributed and predominantly associated with marine sponges and corals, suggesting a broad relevance of our findings.

5.
Microbiome ; 12(1): 55, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493180

RESUMO

BACKGROUND: Microorganisms are responsible for nutrient removal and resource recovery in wastewater treatment plants (WWTPs), and their diversity is often studied by 16S rRNA gene amplicon sequencing. However, this approach underestimates the abundance and diversity of Patescibacteria due to the low coverage of commonly used PCR primers for this highly divergent bacterial phylum. Therefore, our current understanding of the global diversity, distribution, and ecological role of Patescibacteria in WWTPs is very incomplete. This is particularly relevant as Patescibacteria are considered to be associated with microbial host cells and can therefore influence the abundance and temporal variability of other microbial groups that are important for WWTP functioning. RESULTS: Here, we evaluated the in silico coverage of widely used 16S rRNA gene-targeted primer pairs and redesigned a primer pair targeting the V4 region of bacterial and archaeal 16S rRNA genes to expand its coverage for Patescibacteria. We then experimentally evaluated and compared the performance of the original and modified V4-targeted primers on 565 WWTP samples from the MiDAS global sample collection. Using the modified primer pair, the percentage of ASVs classified as Patescibacteria increased from 5.9 to 23.8%, and the number of detected patescibacterial genera increased from 560 to 1576, while the detected diversity of the remaining microbial community remained similar. Due to this significantly improved coverage of Patescibacteria, we identified 23 core genera of Patescibacteria in WWTPs and described the global distribution pattern of these unusual microbes in these systems. Finally, correlation network analysis revealed potential host organisms that might be associated with Patescibacteria in WWTPs. Interestingly, strong indications were found for an association between Patescibacteria of the Saccharimonadia and globally abundant polyphosphate-accumulating organisms of the genus Ca. Phosphoribacter. CONCLUSIONS: Our study (i) provides an improved 16S rRNA gene V4 region-targeted amplicon primer pair inclusive of Patescibacteria with little impact on the detection of other taxa, (ii) reveals the diversity and distribution patterns of Patescibacteria in WWTPs on a global scale, and (iii) provides new insights into the ecological role and potential hosts of Patescibacteria in WWTPs. Video Abstract.


Assuntos
Microbiota , Purificação da Água , Águas Residuárias , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Bactérias/genética , Microbiota/genética
6.
Sci Adv ; 10(8): eadk6295, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394199

RESUMO

Soil microorganisms control the fate of soil organic carbon. Warming may accelerate their activities putting large carbon stocks at risk of decomposition. Existing knowledge about microbial responses to warming is based on community-level measurements, leaving the underlying mechanisms unexplored and hindering predictions. In a long-term soil warming experiment in a Subarctic grassland, we investigated how active populations of bacteria and archaea responded to elevated soil temperatures (+6°C) and the influence of plant roots, by measuring taxon-specific growth rates using quantitative stable isotope probing and 18O water vapor equilibration. Contrary to prior assumptions, increased community growth was associated with a greater number of active bacterial taxa rather than generally faster-growing populations. We also found that root presence enhanced bacterial growth at ambient temperatures but not at elevated temperatures, indicating a shift in plant-microbe interactions. Our results, thus, reveal a mechanism of how soil bacteria respond to warming that cannot be inferred from community-level measurements.


Assuntos
Carbono , Solo , Microbiologia do Solo , Bactérias , Archaea
7.
Acta Obstet Gynecol Scand ; 103(5): 832-841, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38268221

RESUMO

INTRODUCTION: Changes within the maternal microbiome during the last trimester of pregnancy and the determinants of the subsequent neonatal microbiome establishment after delivery by elective cesarean section are described. MATERIAL AND METHODS: Maternal vaginal and rectal microbiome samples were collected in the last trimester and before cesarean section; intrauterine cavity, placenta, neonatal buccal mucosa, skin, and meconium samples were obtained at birth; neonatal sample collection was repeated 2-3 days postnatally. Microbial community composition was analyzed by 16S rRNA gene amplicon sequencing. Relative abundance measurements of amplicon sequencing variants and sum counts at higher taxonomic levels were compared to test for significant overlap or differences in microbial community compositions. CLINICALTRIALS: gov ID: NCT04489056. RESULTS: A total of 30 mothers and their neonates were included with available microbiome samples for all maternal, intrauterine cavity and placenta samples, as well as for 18 of 30 neonates. The composition of maternal vaginal and rectal microbiomes during the last trimester of healthy pregnancies did not significantly change (permutational multivariate analysis of variance [PERMANOVA], p > 0.05). No robust microbial signature was detected in the intrauterine cavity, placenta, neonatal buccal mucosa, skin swabs, or meconium samples collected at birth. After birth, the neonatal microbiome was rapidly established, and significantly different microbial communities were detectable 2-3 days postnatally in neonate buccal mucosa and stool samples (PERMANOVA, p < 0.01). CONCLUSIONS: Maternal vaginal and rectal microbiomes in healthy pregnancies remain stable during the third trimester. No microbial colonization of the neonate was observed before birth in healthy pregnancies. Neonatal microbiomes in infants delivered by cesarean section displayed a taxonomic composition distinct from maternal vaginal and rectal microbiomes at birth, indicating that postnatal exposure to the extrauterine environment is the driving source of initial neonatal microbiome development in this cohort.


Assuntos
Microbioma Gastrointestinal , Microbiota , Feminino , Humanos , Recém-Nascido , Gravidez , Cesárea , Estudos Longitudinais , Estudos Prospectivos , RNA Ribossômico 16S/genética
8.
Environ Sci Technol ; 58(5): 2236-2246, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38252460

RESUMO

Mycotoxins are toxic chemicals that adversely affect human health. Here, we assessed the influence of mycotoxin exposure on the longitudinal development of early life intestinal microbiota of Nigerian neonates and infants (NIs). Human biomonitoring assays based on liquid chromatography tandem mass spectrometry were applied to quantify mycotoxins in breast milk (n = 68) consumed by the NIs, their stool (n = 82), and urine samples (n = 15), which were collected longitudinally from month 1-18 postdelivery. Microbial community composition was characterized by 16S rRNA gene amplicon sequencing of stool samples and was correlated to mycotoxin exposure patterns. Fumonisin B1 (FB1), FB2, and alternariol monomethyl ether (AME) were frequently quantified in stool samples between months 6 and 18. Aflatoxin M1 (AFM1), AME, and citrinin were quantified in breast milk samples at low concentrations. AFM1, FB1, and ochratoxin A were quantified in urine samples at relatively high concentrations. Klebsiella and Escherichia/Shigella were dominant in very early life stool samples (month 1), whereas Bifidobacterium was dominant between months 3 and 6. The total mycotoxin levels in stool were significantly associated with NIs' gut microbiome composition (PERMANOVA, p < 0.05). However, no significant correlation was observed between specific microbiota and the detection of certain mycotoxins. Albeit a small cohort, this study demonstrates that mycotoxins may influence early life gut microbiome composition.


Assuntos
Microbioma Gastrointestinal , Micotoxinas , Lactente , Recém-Nascido , Feminino , Humanos , Micotoxinas/urina , Monitoramento Biológico , RNA Ribossômico 16S , Espectrometria de Massas em Tandem/métodos , Contaminação de Alimentos/análise
9.
Dig Liver Dis ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38087672

RESUMO

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of chronic liver disease with increasing numbers worldwide. Adipokines like apelin (APLN) can act as key players in the complex pathophysiology of MASLD. AIMS: Investigating the role of APLN in MASLD. METHODS: Fecal and blood samples were collected in a MASLD cohort and healthy controls (HC). MASLD patients with liver fibrosis and MASLD-associated hepatocellular carcinoma (HCC) were included into the study. Systemic concentration of Apelin, Apelin receptor (APLNR) and circulating cytokines were measured in serum samples. RESULTS: Apelin concentration correlated with the Fib-4 score and was elevated in MASLD patients (mild fibrosis, mF (Fib-4 <3.25) and severe fibrosis, sF (Fib-4 >3.25)) as well as in MASLD-associated HCC patients compared to HC. In accordance APLNR and circulating cytokines were also elevated in mF and sF. In contrast apelin levels were negatively associated with liver survival at three and five years. Changes in taxa composition at phylum level showed an increase of Enterobactericae, Prevotellaceae and Lactobacillaceae in patients with sF compared to mF. We could also observe an association between apelin concentrations and bacterial lineages (phyla). CONCLUSIONS: Circulating apelin is associated with liver fibrosis and HCC. In addition, there might exist an interaction between systemic apelin and the gut microbiome.

10.
Nat Commun ; 14(1): 8210, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097563

RESUMO

Prebiotics are defined as non-digestible dietary components that promote the growth of beneficial gut microorganisms. In many cases, however, this capability is not systematically evaluated. Here, we develop a methodology for determining prebiotic-responsive bacteria using the popular dietary supplement inulin. We first identify microbes with a capacity to bind inulin using mesoporous silica nanoparticles functionalized with inulin. 16S rRNA gene amplicon sequencing of sorted cells revealed that the ability to bind inulin was widespread in the microbiota. We further evaluate which taxa are metabolically stimulated by inulin and find that diverse taxa from the phyla Firmicutes and Actinobacteria respond to inulin, and several isolates of these taxa can degrade inulin. Incubation with another prebiotic, xylooligosaccharides (XOS), in contrast, shows a more robust bifidogenic effect. Interestingly, the Coriobacteriia Eggerthella lenta and Gordonibacter urolithinfaciens are indirectly stimulated by the inulin degradation process, expanding our knowledge of inulin-responsive bacteria.


Assuntos
Microbioma Gastrointestinal , Inulina , Inulina/metabolismo , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bactérias , Prebióticos
11.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014294

RESUMO

Increasing evidence shows that many human-targeted drugs alter the gut microbiome, leading to implications for host health. However, much less is known about the mechanisms by which drugs target the microbiome and how drugs affect microbial function. Here we combined quantitative microbiome profiling, long-read metagenomics, stable isotope probing and single-cell chemical imaging to investigate the impact of two widely prescribed nervous system-targeted drugs on the gut microbiome. Ex vivo supplementation of physiologically relevant concentrations of entacapone or loxapine succinate to faecal samples significantly impacted the abundance of up to one third of the microbial species present. Importantly, we demonstrate that the impact of these drugs on microbial metabolism is much more pronounced than their impact on abundances, with low concentrations of drugs reducing the activity, but not the abundance of key microbiome members like Bacteroides, Ruminococcus or Clostridium species. We further demonstrate that entacapone impacts the microbiome due to its ability to complex and deplete available iron, and that microbial growth can be rescued by replenishing levels of microbiota-accessible iron. Remarkably, entacapone-induced iron starvation selected for iron-scavenging organisms carrying antimicrobial resistance and virulence genes. Collectively, our study unveils the impact of two under-investigated drugs on whole microbiomes and identifies metal sequestration as a mechanism of drug-induced microbiome disturbance.

12.
Front Microbiol ; 14: 1258775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954239

RESUMO

Host phylogeny and the environment play vital roles in shaping animal microbiomes. However, the effects of these variables on the diversity and richness of the gut microbiome in different bioclimatic zones remain underexplored. In this study, we investigated the effects of host phylogeny and bioclimatic zone on the diversity and composition of the gut microbiota of two heterospecific rodent species, the spiny mouse Acomys cahirinus and the house mouse Mus musculus, in three bioclimatic zones of the African Great Rift Valley (GRV). We confirmed host phylogeny using the D-loop sequencing method and analyzed the influence of host phylogeny and bioclimatic zone parameters on the rodent gut microbiome using high-throughput amplicon sequencing of 16S rRNA gene fragments. Phylogenetic analysis supported the morphological identification of the rodents and revealed a marked genetic difference between the two heterospecific species. We found that bioclimatic zone had a significant effect on the gut microbiota composition while host phylogeny did not. Microbial alpha diversity of heterospecific hosts was highest in the Mediterranean forest bioclimatic zone, followed by the Irano-Turanian shrubland, and was lowest in the Sudanian savanna tropical zone. The beta diversity of the two rodent species showed significant differences across the Mediterranean, Irano-Turanian, and Sudanian regions. The phyla Firmicutes and Bacteroidetes were highly abundant, and Deferribacterota, Cyanobacteria and Proteobacteria were also prominent. Amplicon sequence variants (ASVs) were identified that were unique to the Sudanian bioclimatic zone. The core microbiota families recovered in this study were consistent among heterospecific hosts. However, diversity decreased in conspecific host populations found at lower altitudes in Sudanian bioclimatic zone. The composition of the gut microbiota is linked to the adaptation of the host to its environment, and this study underscores the importance of incorporating climatic factors such as elevation and ambient temperature, in empirical microbiome research and is the first to describe the rodent gut microbiome from the GRV.

13.
JHEP Rep ; 5(11): 100872, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37818230

RESUMO

Background & Aims: Alcohol-related liver disease (ALD) is a global healthcare challenge with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a synthetic bile acid with anti-inflammatory properties in experimental and human cholestatic liver diseases. In the present study, we explored the efficacy of norUDCA in experimental ALD. Methods: NorUDCA was tested in a preventive and therapeutic setting in an experimental ALD model (Lieber-DeCarli diet enriched with ethanol). Liver disease was phenotypically evaluated using histology and biochemical methods, and anti-inflammatory properties and peroxisome proliferator-activated receptor gamma activation by norUDCA were evaluated in cellular model systems. Results: NorUDCA administration ameliorated ethanol-induced liver injury, reduced hepatocyte death, and reduced the expression of hepatic pro-inflammatory cytokines including tumour necrosis factor (Tnf), Il-1ß, Il-6, and Il-10. NorUDCA shifted hepatic macrophages towards an anti-inflammatory M2 phenotype. Further, norUDCA administration altered the composition of the intestinal microbiota, specifically increasing the abundance of Roseburia, Enterobacteriaceae, and Clostridum spp. In a therapeutic model, norUDCA also ameliorated ethanol-induced liver injury. Moreover, norUDCA suppressed lipopolysaccharide-induced IL-6 expression in human peripheral blood mononuclear cells and evoked peroxisome proliferator-activated receptor gamma activation. Conclusions: NorUDCA ameliorated experimental ALD, protected against hepatic inflammation, and affected gut microbial commensalism. NorUDCA could serve as a novel therapeutic agent in the future management of patients with ALD. Impact and implications: Alcohol-related liver disease is a global healthcare concern with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a modified bile acid, which was proven to be effective in human cholestatic liver diseases. In the present study, we found a protective effect of norUDCA in experimental alcoholic liver disease. For patients with ALD, norUDCA could be a potential new treatment option.

14.
Nat Commun ; 14(1): 5895, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736743

RESUMO

Climate change increases the frequency and intensity of drought events, affecting soil functions including carbon sequestration and nutrient cycling, which are driven by growing microorganisms. Yet we know little about microbial responses to drought due to methodological limitations. Here, we estimate microbial growth rates in montane grassland soils exposed to ambient conditions, drought, and potential future climate conditions (i.e., soils exposed to 6 years of elevated temperatures and elevated CO2 levels). For this purpose, we combined 18O-water vapor equilibration with quantitative stable isotope probing (termed 'vapor-qSIP') to measure taxon-specific microbial growth in dry soils. In our experiments, drought caused >90% of bacterial and archaeal taxa to stop dividing and reduced the growth rates of persisting ones. Under drought, growing taxa accounted for only 4% of the total community as compared to 35% in the controls. Drought-tolerant communities were dominated by specialized members of the Actinobacteriota, particularly the genus Streptomyces. Six years of pre-exposure to future climate conditions (3 °C warming and + 300 ppm atmospheric CO2) alleviated drought effects on microbial growth, through more drought-tolerant taxa across major phyla, accounting for 9% of the total community. Our results provide insights into the response of active microbes to drought today and in a future climate, and highlight the importance of studying drought in combination with future climate conditions to capture interactive effects and improve predictions of future soil-climate feedbacks.


Assuntos
Dióxido de Carbono , Secas , Archaea , Sequestro de Carbono , Solo
15.
EMBO Rep ; 24(10): e57084, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37691494

RESUMO

Intestinal epithelial cells are covered by the brush border, which consists of densely packed microvilli. The Intermicrovillar Adhesion Complex (IMAC) links the microvilli and is required for proper brush border organization. Whether microvillus crosslinking is involved in the intestinal barrier function or colitis is currently unknown. We investigate the role of microvillus crosslinking in colitis in mice with deletion of the IMAC component CDHR5. Electron microscopy shows pronounced brush border defects in CDHR5-deficient mice. The defects result in severe mucosal damage after exposure to the colitis-inducing agent DSS. DSS increases the permeability of the mucus layer and brings bacteria in direct contact with the disorganized brush border of CDHR5-deficient mice. This correlates with bacterial invasion into the epithelial cell layer which precedes epithelial apoptosis and inflammation. Single-cell RNA sequencing data of patients with ulcerative colitis reveals downregulation of CDHR5 in enterocytes of diseased areas. Our results provide experimental evidence that a combination of microvillus crosslinking defects with increased permeability of the mucus layer sensitizes to inflammatory bowel disease.

16.
Nat Commun ; 14(1): 5533, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723166

RESUMO

Taurine-respiring gut bacteria produce H2S with ambivalent impact on host health. We report the isolation and ecophysiological characterization of a taurine-respiring mouse gut bacterium. Taurinivorans muris strain LT0009 represents a new widespread species that differs from the human gut sulfidogen Bilophila wadsworthia in its sulfur metabolism pathways and host distribution. T. muris specializes in taurine respiration in vivo, seemingly unaffected by mouse diet and genotype, but is dependent on other bacteria for release of taurine from bile acids. Colonization of T. muris in gnotobiotic mice increased deconjugation of taurine-conjugated bile acids and transcriptional activity of a sulfur metabolism gene-encoding prophage in other commensals, and slightly decreased the abundance of Salmonella enterica, which showed reduced expression of galactonate catabolism genes. Re-analysis of metagenome data from a previous study further suggested that T. muris can contribute to protection against pathogens by the commensal mouse gut microbiota. Together, we show the realized physiological niche of a key murine gut sulfidogen and its interactions with selected gut microbiota members.


Assuntos
Afeto , Salmonella enterica , Humanos , Animais , Camundongos , Ácidos e Sais Biliares , Taurina , Enxofre
17.
Front Immunol ; 14: 1112345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122714

RESUMO

Chronic rhinosinusitis (CRS) is a chronic inflammatory disease phenotypically classified by the absence (CRSsNP) or presence of nasal polyps (CRSwNP). The latter may also be associated with asthma and hypersensitivity towards non-steroidal anti-inflammatory drugs (NSAID) as a triad termed NSAID-exacerbated respiratory disease (N-ERD). The role of the microbiome in these different disease entities with regard to the underlying inflammatory process and disease burden is yet not fully understood. To address this question, we measured clinical parameters and collected nasal samples (nasal mucosal fluids, microbiome swabs from middle meatus and anterior naris) of patients suffering from CRSsNP (n=20), CRSwNP (n=20) or N-ERD (n=20) as well as from patients without CRS (=disease controls, n=20). Importantly, all subjects refrained from taking local or systemic corticosteroids or immunosuppressants for at least two weeks prior to sampling. The nasal microbiome was analyzed using 16S rRNA gene amplicon sequencing, and levels of 33 inflammatory cytokines were determined in nasal mucosal fluids using the MSD platform. Patients suffering from N-ERD and CRSwNP showed significantly worse smell perception and significantly higher levels of type 2 associated cytokines IL-5, IL-9, Eotaxin and CCL17. Across all 4 patient groups, Corynebacteria and Staphylococci showed the highest relative abundances. Although no significant difference in alpha and beta diversity was observed between the control and the CRS groups, pairwise testing revealed a higher relative abundance of Staphylococci in the middle meatus in N-ERD patients as compared to CRSwNP (p<0.001), CRSsNP (p<0.01) and disease controls (p<0.05) and of Lawsonella in patients suffering from CRSwNP in middle meatus and anterior naris in comparison to CRSsNP (p<0.0001 for both locations) and disease controls (p<0.01 and p<0.0001). Furthermore, we observed a positive correlation of Staphylococci with IL-5 (Pearson r=0.548) and a negative correlation for Corynebacteria and Eotaxin-3 (r=-0.540). Thus, in patients refraining from oral and nasal corticosteroid therapy for at least two weeks known to alter microbiome composition, we did not observe differences in microbiome alpha or beta diversity between various CRS entities and disease controls. However, our data suggest a close association between increased bacterial colonization with Staphylococci and decreased colonization by Corynebacteria as well as increased type 2 inflammation.


Assuntos
Microbiota , Transtornos Respiratórios , Rinite , Sinusite , Humanos , RNA Ribossômico 16S/genética , Interleucina-5 , Rinite/complicações , Anti-Inflamatórios não Esteroides/efeitos adversos , Doença Crônica , Sinusite/complicações , Citocinas , Corticosteroides/efeitos adversos
18.
Microb Ecol ; 86(4): 2305-2319, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37209180

RESUMO

Hot spring biofilms are stable, highly complex microbial structures. They form at dynamic redox and light gradients and are composed of microorganisms adapted to the extreme temperatures and fluctuating geochemical conditions of geothermal environments. In Croatia, a large number of poorly investigated geothermal springs host biofilm communities. Here, we investigated the microbial community composition of biofilms collected over several seasons at 12 geothermal springs and wells. We found biofilm microbial communities to be temporally stable and highly dominated by Cyanobacteria in all but one high-temperature sampling site (Bizovac well). Of the physiochemical parameters recorded, temperature had the strongest influence on biofilm microbial community composition. Besides Cyanobacteria, the biofilms were mainly inhabited by Chloroflexota, Gammaproteobacteria, and Bacteroidota. In a series of incubations with Cyanobacteria-dominated biofilms from Tuhelj spring and Chloroflexota- and Pseudomonadota-dominated biofilms from Bizovac well, we stimulated either chemoorganotrophic or chemolithotrophic community members, to determine the fraction of microorganisms dependent on organic carbon (in situ predominantly produced via photosynthesis) versus energy derived from geochemical redox gradients (here simulated by addition of thiosulfate). We found surprisingly similar levels of activity in response to all substrates in these two distinct biofilm communities, and observed microbial community composition and hot spring geochemistry to be poor predictors of microbial activity in the study systems.


Assuntos
Chloroflexi , Cianobactérias , Fontes Termais , Fontes Termais/microbiologia , Croácia , Cianobactérias/genética , Temperatura , Biofilmes , RNA Ribossômico 16S/genética
19.
Microorganisms ; 11(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985351

RESUMO

Rivers are the "tip of the iceberg", with the underlying groundwater being the unseen freshwater majority. Microbial community composition and the dynamics of shallow groundwater ecosystems are thus crucial, due to their potential impact on ecosystem processes and functioning. In early summer and late autumn, samples of river water from 14 stations and groundwater from 45 wells were analyzed along a 300 km transect of the Mur River valley, from the Austrian alps to the flats at the Slovenian border. The active and total prokaryotic communities were characterized using high-throughput gene amplicon sequencing. Key physico-chemical parameters and stress indicators were recorded. The dataset was used to challenge ecological concepts and assembly processes in shallow aquifers. The groundwater microbiome is analyzed regarding its composition, change with land use, and difference to the river. Community composition and species turnover differed significantly. At high altitudes, dispersal limitation was the main driver of groundwater community assembly, whereas in the lowland, homogeneous selection explained the larger share. Land use was a key determinant of the groundwater microbiome composition. The alpine region was more diverse and richer in prokaryotic taxa, with some early diverging archaeal lineages being highly abundant. This dataset shows a longitudinal change in prokaryotic communities that is dependent on regional differences affected by geomorphology and land use.

20.
Sci Rep ; 13(1): 4337, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927871

RESUMO

The role of the gut microbiome in developing Inflammatory Bowel Disease (IBD) in humans and dogs has received attention in recent years. Evidence suggests that IBD is associated with alterations in gut microbial composition, but further research is needed in veterinary medicine. The impact of IBD treatment on the gut microbiome needs to be better understood, especially in a breed-specific form of IBD in Yorkshire Terriers known as Yorkshire Terrier Enteropathy (YTE). This study aimed to investigate the difference in gut microbiome composition between YTE dogs during disease and remission and healthy Yorkshire Terriers. Our results showed a significant increase in specific taxa such as Clostridium sensu stricto 1, Escherichia-Shigella, and Streptococcus, and a decrease in Bacteroides, Prevotella, Alloprevotella, and Phascolarctobacterium in YTE dogs compared to healthy controls. No significant difference was found between the microbiome of dogs in remission and those with active disease, suggesting that the gut microbiome is affected beyond clinical recovery.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Humanos , Cães , Animais , Doenças Inflamatórias Intestinais/microbiologia , Bacteroidetes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA