Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 12(1): 18205, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307477

RESUMO

Protein complex Arp2/3 has a conserved role in the nucleation of branched actin filaments. It is constituted of seven subunits, including actin-like subunits ARP2 and ARP3 plus five other subunits called Arp2/3 Complex Component 1 to 5, which are not related to actin. Knock-out plant mutants lacking individual plant ARP2/3 subunits have a typical phenotype of distorted trichomes, altered pavement cells shape and defects in cell adhesion. While knock-out mutant Arabidopsis plants for most ARP2/3 subunits have been characterized before, Arabidopsis plant mutants missing ARPC1 and ARPC3 subunits have not yet been described. Using CRISPR/Cas9, we generated knock-out mutants lacking ARPC1 and ARPC3 subunits. We confirmed that the loss of ARPC1 subunits results in the typical ARP2/3 mutant phenotype. However, the mutants lacking ARPC3 subunits resulted in plants with surprisingly different phenotypes. Our results suggest that plant ARP2/3 complex function in trichome shaping does not require ARPC3 subunit, while the fully assembled complex is necessary for the establishment of correct cell adhesion in the epidermis.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Arabidopsis , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Actinas/metabolismo , Sistemas CRISPR-Cas , Proteína 2 Relacionada a Actina/genética , Proteína 3 Relacionada a Actina/metabolismo
3.
Plant Sci ; 241: 96-108, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26706062

RESUMO

Arp2/3 complex plays a fundamental role in the nucleation of actin filaments (AFs) in yeasts, plants, and animals. In plants, the aberrant shaping and elongation of several types of epidermal cells observed in Arp2/3 complex knockout plant mutants suggest the importance of Arp2/3-mediated actin nucleation for various morphogenetic processes. Here we show that ARPC2, a core Arp2/3 complex subunit, interacts with both actin filaments (AFs) and microtubules (MTs). Plant GFP-ARPC2 expressed in Nicotiana tabacum BY-2 cells, leaf epidermal cells of Nicotiana benthamiana and root epidermal cells of Arabidopsis thaliana decorated MTs. The interaction with MTs was demonstrated by pharmacological approach selectively interfering with either AFs or MTs dynamics as well as by the in vitro co-sedimentation assays. A putative MT-binding domain of tobacco NtARPC2 protein was identified using the co-sedimentation of several truncated NtARPC2 proteins with MTs. Newly identified MT-binding ability of ARPC2 subunit of Arp2/3 complex may represent a new molecular mechanism of AFs and MTs interaction.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Arabidopsis/metabolismo , Nicotiana/genética , Proteínas de Plantas/genética , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Microtúbulos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Nicotiana/metabolismo
4.
Plant Physiol Biochem ; 60: 88-97, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22922108

RESUMO

Aluminum (Al) toxicity is the main limiting factor in crop production on acid soils. The main symptom of Al toxicity is a rapid inhibition of root growth, but the mechanism of root growth cessation remains unclear. Here we examined the earliest changes in the plasma membrane and processes related to the membrane in the Arabidopsis thaliana root tip cells of roots grown in a hydropony. Al suppressed root growth within 2 min, inhibited endocytosis within 10 min of exposure and stabilized cortical microtubules within the first 30 min. Spectrofluorometric measurements of the plasma membrane isolated from Arabidopsis plants and labeled with the fluorescent probe laurdan showed that Al induced a reduction in membrane fluidity. Application of the membrane fluidizer, benzyl alcohol, restored partially membrane fluidity and also partially restored root growth during first 30 min of Al treatment. We concluded that Al-induced loss of membrane fluidity and endocytosis inhibition occurred very early during Al toxicity in plant roots and could be the earliest targets of Al treatment.


Assuntos
Alumínio/toxicidade , Arabidopsis/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Álcool Benzílico/farmacologia , Membrana Celular/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Hidroponia , Microtúbulos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Fatores de Tempo
5.
Molecules ; 15(12): 8973-87, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21150819

RESUMO

Mixtures of ibandronate monosodium salt with eleven gluco- and/or galacto-pyranoside derivatives as counterions were designed to prepare co-crystals with improved intestinal absorption. In general, gastrointestinal absorption of bisphosphonates after oral administration is approximately 1%. Co-crystals were generated by means of thermodynamically and/or kinetically controlled crystallization processes. Seventy-seven prepared samples were analyzed by means of FT-NIR, FT-Raman spectrometry and solid state NMR spectroscopy. New entities of ibandronate monosodium salt with phenyl-ß-D-galactopyranoside were found and characterized. The absorption of these potential new co-crystals was investigated by means of PAMPA experiments. In the present study the relationships between the chemical structures of the studied compounds required for co-crystal generation are discussed.


Assuntos
Difosfonatos/química , Galactosídeos/química , Glucose/análogos & derivados , Glucose/química , Cristalização , Ácido Ibandrônico , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos
6.
BMC Plant Biol ; 10: 89, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20478025

RESUMO

BACKGROUND: Somatic embryogenesis in spruce is a process of high importance for biotechnology, yet it comprises of orchestrated series of events whose cellular and molecular details are not well understood. In this study, we examined the role of actin cytoskeleton during somatic embryogenesis in Norway spruce line AFO 541 by means of anti-actin drugs. RESULTS: Application of low doses (50-100 nM) of latrunculin B (Lat B) during the maturation of somatic embryos predominantly killed suspensor cells while leaving the cells in meristematic centres alive, indicating differential sensitivity of actin in the two cell types. The treatment resulted in faster development of more advanced embryos into mature somatic embryos and elimination of insufficiently developed ones. In searching for the cause of the differential actin sensitivity of the two cell types, we analysed the composition of actin isoforms in the culture and isolated four spruce actin genes. Analysis of their expression during embryo maturation revealed that one actin isoform was expressed constitutively in both cell types, whereas three actin isoforms were expressed predominantly in suspensor cells and their expression declined during the maturation. The expression decline was greatly enhanced by Lat B treatment. Sequence analysis revealed amino-acid substitutions in the Lat B-binding site in one of the suspensor-specific actin isoforms, which may result in a different binding affinity for Lat B. CONCLUSIONS: We show that manipulating actin in specific cell types in somatic embryos using Lat B treatment accelerated and even synchronized the development of somatic embryos and may be of practical use in biotechnology.


Assuntos
Actinas/metabolismo , Picea/crescimento & desenvolvimento , Actinas/antagonistas & inibidores , Substituição de Aminoácidos , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citoesqueleto/efeitos dos fármacos , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Filogenia , Picea/embriologia , Isoformas de Proteínas/metabolismo , RNA de Plantas/genética , Alinhamento de Sequência , Tiazolidinas/farmacologia , Técnicas de Cultura de Tecidos
7.
J Exp Bot ; 59(14): 3963-74, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18832186

RESUMO

The co-ordination of cell wall synthesis with plant cell expansion is an important topic of contemporary plant biology research. In studies of cell wall synthesis pathways, cellulose synthesis inhibitors are broadly used. It is demonstrated here that ancymidol, known as a plant growth retardant primarily affecting gibberellin biosynthesis, is also capable of inhibiting cellulose synthesis. Its ability to inhibit cellulose synthesis is not related to its anti-gibberellin action and possesses some unique features never previously observed when conventional cellulose synthesis inhibitors were used. It is suggested that ancymidol targets the cell wall synthesis pathway at a regulatory step where cell wall synthesis and cell expansion are coupled. The elucidation of the ancymidol target in plant cells could potentially contribute to our understanding of cell wall synthesis and cell expansion control.


Assuntos
Celulose/antagonistas & inibidores , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Pirimidinas/farmacologia , Forma Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Células Cultivadas , Celulose/biossíntese , Giberelinas/antagonistas & inibidores , Giberelinas/biossíntese , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA