Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490436

RESUMO

The increasing prevalence of herbicide-resistant weeds has led to a search for new herbicides that target plant growth processes differing from those targeted by current herbicides. In recent years, some studies have explored the use of natural compounds from microorganisms as potential new herbicides. We previously demonstrated that tenuazonic acid (TeA) from the phytopathogenic fungus Stemphylium loti inhibits the plant plasma membrane (PM) H+-ATPase, representing a new target for herbicides. In this study, we further investigated the mechanism by which TeA inhibits PM H+-ATPase and the effect of the toxin on plant growth using Arabidopsis thaliana. We also studied the biochemical effects of TeA on the PM H+-ATPases from spinach (Spinacia oleracea) and A. thaliana (AHA2) by examining PM H+-ATPase activity under different conditions and in different mutants. Treatment with 200 µM TeA-induced cell necrosis in larger plants and treatment with 10 µM TeA almost completely inhibited cell elongation and root growth in seedlings. We show that the isoleucine backbone of TeA is essential for inhibiting the ATPase activity of the PM H+-ATPase. Additionally, this inhibition depends on the C-terminal domain of AHA2, and TeA binding to PM H+-ATPase requires the Regulatory Region I of the C-terminal domain in AHA2. TeA likely has a higher binding affinity toward PM H+-ATPase than the phytotoxin fusicoccin. Finally, our findings show that TeA retains the H+-ATPase in an inhibited state, suggesting that it could act as a lead compound for creating new herbicides targeting the PM H+-ATPase.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Herbicidas , ATPases Translocadoras de Prótons , Spinacia oleracea , Ácido Tenuazônico , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/enzimologia , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , Ácido Tenuazônico/metabolismo , Ácido Tenuazônico/farmacologia , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Herbicidas/farmacologia , Herbicidas/química , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/crescimento & desenvolvimento , Spinacia oleracea/metabolismo
2.
ACS Omega ; 8(38): 34928-34937, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779967

RESUMO

Because of their ability to promote growth, act as biopesticides, and improve abiotic stress tolerance, Trichoderma spp. have been used for plant seed coating. However, the mechanism for the promotion of plant growth remains unknown. In this study, we investigate the effect of fungal extracts on the plant plasma membrane (PM) H+-ATPase, which is essential for plant growth and often a target of plant-associated microbes. We show that Trichoderma harzianum extract increases H+-ATPase activity, and by fractionation and high-resolution mass spectrometry (MS), we identify the activating components trichorzin PA (tPA) II and tPA VI that belong to the class of peptaibols. Peptaibols are nonribosomal peptides that can integrate into membranes and form indiscriminate ion channels, which causes pesticidal activity. To further investigate peptaibol-mediated H+-ATPase activation, we compare the effect of tPA II and VI to that of the model peptaibol alamethicin (AlaM). We show that AlaM increases H+-ATPase turnover rates in a concentration-dependent manner, with a peak in activity measured at 31.25 µM, above which activity decreases. Using fluorescent probes and light scattering, we find that the AlaM-mediated increase in activity is not correlated to increased membrane fluidity or vesicle integrity, whereas the activity decrease at high AlaM concentrations is likely due to PM overloading of AlaM pores. Overall, our results suggest that the symbiosis of fungi and plants, specifically related to peptaibols, is a concentration-dependent balance, where peptaibols do not act only as biocontrol agents but also as plant growth stimulants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA