Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 127: 10-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25613644

RESUMO

Low-density polyethylene (PE) passive samplers containing performance reference compounds (PRCs) were deployed at multiple depths in two urban coastal marine locations to estimate dissolved concentrations of hydrophobic organic contaminants (HOCs), including dichlorodiphenyltrichloroethane (DDT) and its metabolites, polychlorinated biphenyl (PCB) congeners, and polybrominated flame retardants. PE samplers pre-loaded with PRCs were deployed at the surface, mid-column, and near bottom at sites representing the nearshore continental shelf off southern California (Santa Monica Bay, USA) and a mega commercial port (Los Angeles Harbor). After correcting for fractional equilibration using PRCs, concentrations ranged up to 100 pg L(-1) for PCBs and polybrominated diphenyl ethers (PBDEs), 500 pg L(-1) for DDMU and 300 pg L(-1) for DDNU, and to 1000 pg L(-1) for p,p'-DDE. Seawater concentrations of DDTs and PCBs increased with depth, suggesting that bed sediments serve as the source of water column HOCs in Santa Monica Bay. In contrast, no discernable pattern between surface and near-bottom concentrations in Los Angeles Harbor was observed, which were also several-fold lower (DDTs: 45-300 pg L(-1), PCBs: 5-50 pg L(-1)) than those in Santa Monica Bay (DDTs: 2-1100 pg L(-1), PCBs: 2-250 pg L(-1)). Accumulation by mussels co-deployed with the PE samplers at select sites was strongly correlated with PE-estimated seawater concentrations, providing further evidence that these samplers are a viable alternative for monitoring of HOC exposure. Fractional equilibration observed with the PRCs increased with decreasing PRC molar volume indicating the importance of target compound physicochemical properties when estimating water column concentrations using passive samplers in situ.


Assuntos
Bivalves/metabolismo , Água do Mar/química , Poluentes Químicos da Água/análise , Animais , California , DDT/análise , Diclorodifenil Dicloroetileno/análise , Monitoramento Ambiental/métodos , Éteres Difenil Halogenados/análise , Hidrocarbonetos Clorados/análise , Interações Hidrofóbicas e Hidrofílicas , Bifenilos Policlorados/análise , Polietileno/química , Saúde da População Urbana
2.
Chemistry ; 16(25): 7427-36, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20540045

RESUMO

An essentially molecular ruthenium-benzene complex anchored at the aluminum sites of dealuminated zeolite Y was formed by treating a zeolite-supported mononuclear ruthenium complex, [Ru(acac)(eta(2)-C(2)H(4))(2)](+) (acac=acetylacetonate, C(5)H(7)O(2)(-)), with (13)C(6)H(6) at 413 K. IR, (13)C NMR, and extended X-ray absorption fine structure (EXAFS) spectra of the sample reveal the replacement of two ethene ligands and one acac ligand in the original complex with one (13)C(6)H(6) ligand and the formation of adsorbed protonated acac (Hacac). The EXAFS results indicate that the supported [Ru(eta(6)-C(6)H(6))](2+) incorporates an oxygen atom of the support to balance the charge, being bonded to the zeolite through three Ru-O bonds. The supported ruthenium-benzene complex is analogous to complexes with polyoxometalate ligands, consistent with the high structural uniformity of the zeolite-supported species, which led to good agreement between the spectra and calculations at the density functional theory level. The calculations show that the interaction of the zeolite with the Hacac formed on treatment of the original complex with (13)C(6)H(6) drives the reaction to form the ruthenium-benzene complex.

3.
J Am Chem Soc ; 131(24): 8460-73, 2009 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-19530728

RESUMO

Structures of zeolite-anchored organorhodium complexes undergoing conversions with gas-phase reactants were characterized by infrared spectra bolstered by calculations with density functional theory and analysis of the gas-phase products. Structurally well-defined zeolite-supported rhodium diethylene complexes were synthesized by chemisorption of Rh(C(2)H(4))(2)(acac) (acac = CH(3)COCHCOCH(3)) on dealuminated Y zeolite, being anchored by two Rh-O bonds, as shown by extended X-ray absorption fine structure (EXAFS) spectroscopy. In contrast to the nonuniformity of metal complexes anchored to metal oxides, the near uniformity of the zeolite-supported species allowed precise determination of their chemistry, including the role of the support as a ligand. The anchored rhodium diethylene complex underwent facile, reversible ligand exchange with deuterated ethylene at 298 K, and ethylene ligands were hydrogenated by reverse spillover of hydrogen from support hydroxyl groups. The supported complexes reacted with CO to form rhodium gem-dicarbonyls, which, in the presence of ethylene, gave rhodium monocarbonyls. The facile removal of ethylene ligands from the complex in H(2)-N(2) mixtures created coordinatively unsaturated rhodium complexes; the coordinative unsaturation was stabilized by the site isolation of the complexes, allowing reaction with N(2) to form rhodium complexes with one and with two N(2) ligands. The results also provide evidence of a new rhodium monohydride species incorporating a C(2)H(4) ligand.

5.
Chemistry ; 13(26): 7294-304, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17685381

RESUMO

By anchoring metal complexes to supports, researchers have attempted to combine the high activity and selectivity of molecular homogeneous catalysis with the ease of separation and lack of corrosion of heterogeneous catalysis. However, the intrinsic nonuniformity of supports has limited attempts to make supported catalysts truly uniform. We report the synthesis and performance of such a catalyst, made from [Rh(C(2)H(4))(2)(CH(3)COCHCOCH(3))] and a crystalline support, dealuminated Y zeolite, giving {Rh(C(2)H(4))(2)} groups anchored by bonds to two zeolite oxygen ions, with the structure determined by extended X-ray absorption fine structure (EXAFS) spectroscopy and the uniformity of the supported complex demonstrated by (13)C NMR spectroscopy. When the ethylene ligands are replaced by acetylene, catalytic cyclotrimerization to benzene ensues. Characterizing the working catalyst, we observed evidence of intermediates in the catalytic cycle by NMR spectroscopy. Calculations at the level of density functional theory confirmed the structure of the as-synthesized supported metal complex determined by EXAFS spectroscopy. With this structure as an anchor, we used the computational results to elucidate the catalytic cycle (including transition states), finding results in agreement with the NMR spectra.

6.
J Phys Chem B ; 110(30): 14598-603, 2006 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-16869560

RESUMO

We report a two-step postsynthetic functionalization reaction of zeolite HZSM-5 that proceeds with high selectivity at room temperature. In the first step the framework acid sites of the zeolite are reacted with phenylsilane to replace the acidic proton with a hydrosilyl (-SiH3) group covalently linked to the framework. This group readily couples to acetone in a second step to form a framework-bound hydrosilyl isopropyl ether that is thermally stable at 473 K, but decomposes in the presence of moisture. We characterized these reactions using 29Si, 1H, and 13C MAS NMR, as appropriate. Theoretical modeling using density functional theory and cluster models of the zeolite acid site confirmed that both steps were exothermic and provided theoretical chemical shift values in excellent agreement with experiment.

7.
Langmuir ; 22(10): 4846-52, 2006 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-16649806

RESUMO

Phosphorus modification of a HZSM-5 (MFI) zeolite by wet impregnation has long been known to decrease aromatic formation in methanol conversion chemistry. We prepared and studied a catalyst modified by introducing trimethylphosphine under reaction conditions followed by oxidation. Magic-angle spinning (MAS) NMR shows that extensive dealumination occurs, resulting in a catalyst with a much higher framework SiO2/Al2O3 ratio, as well as extraframework aluminum and approximately 1.4 equiv of entrained phosphoric acid (under working conditions) per aluminum. Upon dehydration or regeneration, the phosphoric acid is converted, reversibly, to entrained P4O10. The aromatic selectivity of the modified catalyst is significantly lower than that of an unmodified zeolite with a similar, increased framework SiO2/Al2O3 ratio. By comparing the rates of H/D exchange in propene under conditions similar to those in methanol conversion chemistry, we determined that the acid site strength is indistinguishable on modified and unmodified zeolites, and this is consistent with theoretical modeling. On the phosphorus-modified zeolite, the rate of propene oligomerization is greatly suppressed, suggesting that entrained phosphate is an impediment to sterically demanding reactions.

10.
Langmuir ; 22(1): 490-6, 2006 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-16378464

RESUMO

Mononuclear rhodium complexes with reactive olefin ligands, supported on MgO powder, were synthesized by chemisorption of Rh(C(2)H(4))(2)(C(5)H(7)O(2)) and characterized by infrared (IR), (13)C MAS NMR, and extended X-ray absorption fine structure (EXAFS) spectroscopies. IR spectra show that the precursor adsorbed on MgO with dissociation of acetylacetonate ligand from rhodium, with the ethylene ligands remaining bound to the rhodium, as confirmed by the NMR spectra. EXAFS spectra give no evidence of Rh-Rh contributions, indicating that site-isolated mononuclear rhodium species formed on the support. The EXAFS data also show that the mononuclear complex was bonded to the support by two Rh-O bonds, at a distance of 2.18 A, which is typical of group 8 metals bonded to oxide supports. This is the first simple and nearly uniform supported mononuclear rhodium-olefin complex, and it appears to be a close analogue of molecular catalysts for olefin hydrogenation in solution. Correspondingly, the ethylene ligands bonded to rhodium in the supported complex were observed to react with H(2) to form ethane, and the supported complex was catalytically active for the ethylene hydrogenation at 298 K. The ethylene ligands also underwent facile exchange with C(2)D(4), and exposure of the sample to carbon monoxide led to the formation of rhodium gem dicarbonyls.

12.
J Phys Chem B ; 109(51): 24236-43, 2005 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-16375419

RESUMO

The reaction of Rh(C2H4)2(acac) with the partially dehydroxylated surface of dealuminated zeolite Y (calcined at 773 K) and treatments of the resultant surface species in various atmospheres (He, CO, H2, and D2) were investigated with infrared (IR), extended X-ray absorption fine structure (EXAFS), and 13C NMR spectroscopies. The IR spectra show that Rh(C2H4)2(acac) reacted readily with surface OH groups of the zeolite, leading to loss of acac ligands from the Rh(C2H4)2(acac) and formation of supported mononuclear rhodium complexes, confirmed by the lack of Rh-Rh contributions in the EXAFS spectra; each Rh atom was bonded on average to two oxygen atoms of the zeolite surface with a Rh-O distance of 2.19 A. IR, EXAFS, and 13C NMR spectra show that the ethylene ligands remained bonded to the Rh center in the supported complex. Treatment of the sample in CO led to the formation of site-isolated Rh(CO)2 complexes bonded to the zeolite. The sharpness of the nu(CO) bands in the IR spectrum gives evidence of a nearly uniform supported Rh(CO)2 complex and, by inference, the near uniformity of the mononuclear rhodium complex with ethylene ligands from which it was formed. The supported complex with ethylene ligands reacted with H2 to give ethane, and it also catalyzed ethylene hydrogenation at 294 K.

13.
J Am Chem Soc ; 126(9): 2991-3001, 2004 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-14995217

RESUMO

Recent experimental work has shown that methanol to olefin (MTO) catalysis on microporous solid acids proceeds through a hydrocarbon pool mechanism with methylbenzenes frequently acting as the most important reaction centers. Other recent experimental evidence suggests that side-chain methylation is more important than an alternative paring (ring contraction-expansion) mechanism. The present investigation uses density functional theory B3LYP/cc-pVTZ//B3LYP/6-311G and G3(MP2) calculations to model many of the features of the side-chain mechanism. We first calculated at the G3(MP2) level the heats of formation of 43 neutral alkybenzenes to predict the thermodynamics for methylation reactions. The G3(MP2) results predict that sequential methylation of benzene rings with fewer than four methyl groups will preferentially occur on the ring, resulting in the series toluene, 1,3-dimethylbenzene, 1,2,4-trimethylbenzene, and 1,2,4,5-tetramethylbenzene. With the addition of another methyl group side-chain methylation becomes preferred, with 1-ethyl-2,4,5-tetramethylbenzene predicted to be more stable than pentamethylbenzene by 0.7 kcal/mol. We modeled the entire gas-phase side-chain reaction mechanism at the B3LYP/cc-pVTZ//B3LYP/6-311G level, using p-xylene, 1,2,3,5-tetramethylbenzene, and hexamethylbenzene as reaction centers and following the reaction to the point of producing both ethylene and propene. B3LYP/6-311G analytical frequencies were calculated in order to obtain the data needed for the prediction of enthalpies. For comparison, G3(MP2) enthalpies were also calculated for the mechanism based on p-xylene only. We also used a zeolite cluster model to more accurately describe the relative energetics of the reaction for the entire hexamethylbenzene mechanism and parts of the p-xylene mechanism. These calculations place the side-chain mechanism on a much stronger foundation and reproduce experimental structure-reactivity and structure-selectivity data for the methylbenzene hydrocarbon pool.

14.
Langmuir ; 20(14): 5946-51, 2004 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16459614

RESUMO

The reactions of fluorobenzene, 3-fluorotoluene, and three isomers of difluorotoluene, chlorobenzene, and bromobenzene with excesses of methanol were investigated on the large-pore catalysts HBeta (*BEA) and HSAPO-5 (AFI), and on the medium-pore HZSM-5 (MFI). Flow reactor studies in pulse mode with GC-MS detection revealed that the fluorobenzene derivatives were readily methylated at, for example, 375 degrees C, but not even pentamethylfluorobenzene was obviously active as a reaction center for methanol-to-olefin (MTO) catalysis. Carbon-labeling studies revealed that small amounts of methylbenzenes were formed by defluorination, and these aromatic hydrocarbons seemed to account for the small yields of olefins (and their secondary reaction products) observed. Loss of one fluorine was also evident in the products for one of the difluorotoluene isomers. On HSAPO-5 the activity order for ring-methylation of halobenzenes was F > Cl >> Br. On HZSM-5, chlorobenzene and especially bromobenzene lost halogen through a route forming halomethane. These largely negative results will nevertheless be useful in testing theoretical models of the detailed reaction steps in the hydrocarbon pool mechanism for MTO catalysis.

15.
J Am Chem Soc ; 125(46): 13964-5, 2003 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-14611225

RESUMO

Framework-bound alkoxy groups are well-studied intermediates in zeolite chemistry, but their low stability complicates their spectroscopic study in high-temperature reactions such as alkylation or dealkylation. Taking advantage of the much higher bond strength of Si-O versus C-O, we synthesized trimethylsilylated zeolites by reacting them with phenyltrimethylsilane in a catalytic flow reactor at 648 K. In favorable cases, the reaction accurately titrated the acid sites, and 29Si and 13C MAS NMR spectra of the derivatized catalysts measured at room temperature confirmed the proposed reaction.

16.
Acc Chem Res ; 36(5): 317-26, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12755641

RESUMO

The process of converting methanol to hydrocarbons on the aluminosilicate zeolite HZSM-5 was originally developed as a route from natural gas to synthetic gasoline. Using other microporous catalysts that are selective for light olefins, methanol-to-olefin (MTO) catalysis may soon become central to the conversion of natural gas to polyolefins. The mechanism of methanol conversion proved to be an intellectually challenging problem; 25 years of fundamental study produced at least 20 distinct mechanisms, but most did not account for either the primary products or a kinetic induction period. Recent experimental and theoretical work has firmly established that methanol and dimethyl ether react on cyclic organic species contained in the cages or channels of the inorganic host. These organic reaction centers act as scaffolds for the assembly of light olefins so as to avoid the high high-energy intermediates required by all "direct" mechanisms. The rate of formation of the initial reaction centers, and hence the duration of the kinetic induction period, can be governed by impurity species. Secondary reactions of primary olefin products strongly reflect the topology and acid strength of the microporous catalyst. Reaction centers form continuously through some secondary pathways, and they age into polycyclic aromatic hydrocarbons, eventually deactivating the catalyst. It proves useful to consider each cage (or channel) with its included organic and inorganic species as a supramolecule that can react to form various species. This view allows us to identify structure-activity and structure selectivity relationships and to modify the catalyst with degrees of freedom that are more reminiscent of homogeneous catalysis than heterogeneous catalysis.

18.
J Am Chem Soc ; 125(4): 866-7, 2003 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-12537474

RESUMO

The first Raman spectrum of an adsorbed carbenium ion has been measured: The 1,3-dimethylcyclopentenyl cation adsorbed in zeolite H-MFI. 1,3-Dimethylcyclopentenyl cation has been observed as a component of the hydrocarbon pool formed during the methanol-to-gasoline process catalyzed by zeolite H-MFI. The Raman shifts recorded for 1,3-dimethylcyclopentenyl cation are in remarkable agreement with computer calculations of the vibrational band positions for the isolated cation. This agreement suggests that the cation is unperturbed by interactions with the zeolite pore walls so that Raman spectra of free or solution-phase hydrocarbons can be used to identify these same species adsorbed in zeolite pores.

19.
J Am Chem Soc ; 124(36): 10868-74, 2002 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12207542

RESUMO

Assessing the degree of proton transfer from a Brønsted acid site to one or more adsorbed bases is central to arguments regarding the strength of zeolites and other solid acids. In this regard certain solid-state NMR measurements have been fruitful; for example, some (13)C, (15)N, or (31)P resonances of adsorbed bases are sensitive to protonation, and the (1)H chemical shift of the Brønsted site itself reflects hydrogen bonding. We modeled theoretically the structures of adsorption complexes of several bases on zeolite HZSM-5, calculated the quadrupole coupling constants (Q(cc)) and asymmetry parameters (eta) for aluminum in these complexes and then in turn simulated the central transitions of their (27)Al MAS NMR spectra. The theoretical line width decreased monotonically with the degree of proton transfer, reflecting structural relaxation around aluminum as the proton was transferred to a base. We verified this experimentally for a series of adsorbed bases by way of single-pulse MAS and triple quantum MQMAS (27)Al NMR. The combined theoretical and experimental approach described here provides a strategy by which (27)Al data can be applied to resolve disputed interpretations of proton transfer based on other evidence.

20.
J Am Chem Soc ; 124(15): 3844-5, 2002 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-11942817

RESUMO

Using highly purified reagents and careful tests, we show that methanol and dimethyl ether are apparently unreactive on the two most important methanol-to-hydrocarbon catalysts, HZSM-5 and HSAPO-34. Thus, none of the "direct" mechanisms involving two to four carbon atoms in intermediates such as oxonium ylides, carbenes, carbocations, and free radicals are applicable. Only the "indirect" route (hydrocarbon pool) is an established mechanism for this chemistry. An active catalyst requires a hydrocarbon pool that typically begins with products from organic impurities in the feed, carrier gas, or the solid acid itself. Impurities may also play important roles in other reactions catalyzed by solid acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA