Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Total Environ ; 830: 154748, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337877

RESUMO

The human population is increasingly reliant on the marine environment for food, trade, tourism, transport, communication and other vital ecosystem services. These services require extensive marine infrastructure, all of which have direct or indirect ecological impacts on marine environments. The rise in global marine infrastructure has led to light, noise and chemical pollution, as well as facilitation of biological invasions. As a result, marine systems and associated species are under increased pressure from habitat loss and degradation, formation of ecological traps and increased mortality, all of which can lead to reduced resilience and consequently increased invasive species establishment. Whereas the cumulative bearings of collective human impacts on marine populations have previously been demonstrated, the multiple impacts associated with marine infrastructure have not been well explored. Here, building on ecological literature, we explore the impacts that are associated with marine infrastructure, conceptualising the notion of correlative, interactive and cumulative effects of anthropogenic activities on the marine environment. By reviewing the range of mitigation approaches that are currently available, we consider the role that eco-engineering, marine spatial planning and agent-based modelling plays in complementing the design and placement of marine structures to incorporate the existing connectivity pathways, ecological principles and complexity of the environment. Because the effect of human-induced, rapid environmental change is predicted to increase in response to the growth of the human population, this study demonstrates that the development and implementation of legislative framework, innovative technologies and nature-informed solutions are vital, preventative measures to mitigate the multiple impacts associated with marine infrastructure.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Formação de Conceito , Poluição Ambiental , Humanos , Espécies Introduzidas
3.
Rev Fish Biol Fish ; 32(1): 253-270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33456210

RESUMO

Ocean governance is complex and influenced by multiple drivers and actors with different worldviews and goals. While governance encompasses many elements, in this paper we focus on the processes that operate within and between states, civil society and local communities, and the market, including industry. Specifically, in this paper, we address the question of how to move towards more sustainable ocean governance aligning with the sustainable development goals (SDGs) and the UN Ocean Decade. We address three major risks to oceans that arise from governance-related issues: (1) the impacts of the overexploitation of marine resources; (2) inequitable distribution of access to and benefits from marine ecosystem services, and (3) inadequate or inappropriate adaptation to changing ocean conditions. The SDGs have been used as an underlying framework to develop these risks. We identify five drivers that may determine how ocean governance evolves, namely formal rules and institutions, evidence and knowledge-based decision-making, legitimacy of decision-making institutions, stakeholder engagement and participation, and empowering communities. These drivers were used to define two alternative futures by 2030: (a) 'Business as Usual'-a continuation of current trajectories and (b) 'More Sustainable Future'-optimistic, transformational, but technically achievable. We then identify what actions, as structured processes, can reduce the three major governance-related risks and lead to the More Sustainable Future. These actions relate to the process of co-creation and implementation of improved, comprehensive, and integrated management plans, enhancement of decision-making processes, and better anticipation and consideration of ambiguity and uncertainty. Supplementary information: The online version of this article (10.1007/s11160-020-09631-x) contains supplementary material, which is available to authorized users.

4.
Rev Fish Biol Fish ; 32(1): 231-251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33814734

RESUMO

One of the most pronounced effects of climate change on the world's oceans is the (generally) poleward movement of species and fishery stocks in response to increasing water temperatures. In some regions, such redistributions are already causing dramatic shifts in marine socioecological systems, profoundly altering ecosystem structure and function, challenging domestic and international fisheries, and impacting on human communities. Such effects are expected to become increasingly widespread as waters continue to warm and species ranges continue to shift. Actions taken over the coming decade (2021-2030) can help us adapt to species redistributions and minimise negative impacts on ecosystems and human communities, achieving a more sustainable future in the face of ecosystem change. We describe key drivers related to climate-driven species redistributions that are likely to have a high impact and influence on whether a sustainable future is achievable by 2030. We posit two different futures-a 'business as usual' future and a technically achievable and more sustainable future, aligned with the Sustainable Development Goals. We then identify concrete actions that provide a pathway towards the more sustainable 2030 and that acknowledge and include Indigenous perspectives. Achieving this sustainable future will depend on improved monitoring and detection, and on adaptive, cooperative management to proactively respond to the challenge of species redistribution. We synthesise examples of such actions as the basis of a strategic approach to tackle this global-scale challenge for the benefit of humanity and ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09641-3.

5.
Glob Chang Biol ; 27(1): 5-12, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33064891

RESUMO

Precautionary conservation and cooperative global governance are needed to protect Antarctic blue carbon: the world's largest increasing natural form of carbon storage with high sequestration potential. As patterns of ice loss around Antarctica become more uniform, there is an underlying increase in carbon capture-to-storage-to-sequestration on the seafloor. The amount of carbon captured per unit area is increasing and the area available to blue carbon is also increasing. Carbon sequestration could further increase under moderate (+1°C) ocean warming, contrary to decreasing global blue carbon stocks elsewhere. For example, in warmer waters, mangroves and seagrasses are in decline and benthic organisms are close to their physiological limits, so a 1°C increase in water temperature could push them above their thermal tolerance (e.g. bleaching of coral reefs). In contrast, on the basis of past change and current research, we expect that Antarctic blue carbon could increase by orders of magnitude. The Antarctic seafloor is biophysically unique and the site of carbon sequestration, the benthos, faces less anthropogenic disturbance than any other ocean continental shelf environment. This isolation imparts both vulnerability to change, and an avenue to conserve one of the world's last biodiversity refuges. In economic terms, the value of Antarctic blue carbon is estimated at between £0.65 and £1.76 billion (~2.27 billion USD) for sequestered carbon in the benthos around the continental shelf. To balance biodiversity protection against society's economic objectives, this paper builds on a proposal incentivising protection by building a 'non-market framework' via the 2015 Paris Agreement to the United Nations Framework Convention on Climate Change. This could be connected and coordinated through the Antarctic Treaty System to promote and motivate member states to value Antarctic blue carbon and maintain scientific integrity and conservation for the positive societal values ingrained in the Antarctic Treaty System.


Assuntos
Carbono , Ecossistema , Regiões Antárticas , Sequestro de Carbono , Paris
6.
Nat Commun ; 9(1): 667, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445166

RESUMO

The pervasive nature of marine plastic pollution was highlighted at the recent United Nations Environment Assembly. This meeting saw strong commitments for action, but at the same time reinforced the challenges for contemporary ocean governance in addressing marine plastic pollution.


Assuntos
Monitoramento Ambiental/legislação & jurisprudência , Oceanos e Mares , Plásticos , Poluição da Água , Cooperação Internacional , Água do Mar , Nações Unidas
7.
J Environ Manage ; 201: 138-144, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28654801

RESUMO

The development of third party assessment and certification of fisheries and aquaculture has provided new forms of governance in sectors that were traditionally dominated by state based regulation. Emerging market based approaches are driven by shareholder expectations as well as commitment to corporate social responsibility, whereas community engagement is increasingly centered on the questions of social license to operate. Third party assessment and certification links state, market and community into an interesting and challenging hybrid form of governance. While civil society organizations have long been active in pursuing sustainable and safe seafood production, the development of formal non-state based certification provides both opportunities and challenges, and opens up interesting debates over hybrid forms of governance. This paper explores these developments in coastal marine resources management, focusing on aquaculture and the development and operation of the Aquaculture Stewardship Council. It examines the case of salmonid aquaculture in Tasmania, Australia, now Australia's most valuable seafood industry, which remains the focus of considerable community debate over its siting, operation and environmental impact.


Assuntos
Aquicultura/normas , Austrália , Pesqueiros , Humanos , Política Pública , Segurança , Alimentos Marinhos , Tasmânia
8.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA