RESUMO
Polar regions are characterized by acute seasonal changes in the environment, with organisms inhabiting these regions lacking diel photoperiodic information for parts of the year. We present, to our knowledge, the first high-resolution analysis of diel and seasonal activity of free-living fishes in polar waters (74°N), subject to extreme variation in photoperiod, temperature and food availability. Using biotelemetry, we tracked two sympatric ecomorphs of lake-dwelling Arctic charr (Salvelinus alpinus n = 23) over an annual cycle. Charr activity rhythms reflected the above-surface photoperiod (including under ice), with diel rhythms of activity observed. During the dark winter solstice period, charr activity became arrhythmic and much reduced, even though estimated light levels were within those at which charr can feed. When twilight resumed, charr activity ensued as diel vertical migration, which continued throughout spring and with increasing day length, despite stable water temperatures. Diel activity rhythms ceased during the polar day, with a sharp increase in arrhythmic fish activity occurring at ice-break. Despite contrasting resource use, circannual rhythms were mirrored in the two ecomorphs, although individual variability in activity rhythms was evident. Our data support conclusions of functionally adaptive periods of arrhythmicity in polar animals, suggesting maintenance of a circannual oscillator for scheduling seasonal behavioural and developmental processes.
Assuntos
Ritmo Circadiano , Ecótipo , Fotoperíodo , Truta/fisiologia , Animais , Regiões Árticas , Lagos , Estações do Ano , Simpatria , TemperaturaRESUMO
Temporal differences in habitat use and foraging specialisms between ecomorphs represent aspects of behavioural phenotype that are poorly understood with regard to the origin and maintenance of ecological diversity. We tested the role of behaviour in resource use divergence of two Arctic charr (Salvelinus alpinus) phenotypes, a slim, putatively pelagic-dwelling morph and a robust, putatively littoral-dwelling generalist morph, over an annual cycle, using biotelemetry and stable isotopes. Pelagic morph charr exhibited significantly greater δC(13) depletion, concordant with increased zooplanktivory, than for the Littoral morph. Although three-dimensional space-use of the morphs strongly overlapped, on average, the Littoral morph used that habitat 19.3% more than the Pelagic morph. Pelagic morph fish were significantly more active, further from the lake bed and at greater depth than Littoral fish (annual means respectively, Pelagic, 0.069 BL s(-1), 8.21 m and 14.11 m; Littoral, 0.047 BL s(-1), 5.87 m and 10.47 m). Patterns of habitat use differed between ecomorphs at key times, such as during autumn and at ice break, likely related to spawning and resumption of intensive foraging respectively. Extensive space-use overlap, but fine-scale differences in habitat use between charr ecomorphs, suggests the importance of competition for generating and maintaining polymorphism, and its potential for promoting reproductive isolation and evolution in sympatry.