Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosci Rep ; 41(7)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34156073

RESUMO

The flavonol rutin has been shown to possess antioxidant and iron chelating properties in vitro and in vivo. These dual properties are beneficial as therapeutic options to reduce iron accumulation and the generation of reactive oxygen species (ROS) resultant from excess free iron. The effect of rutin on iron metabolism has been limited to studies performed in wildtype mice either injected or fed high-iron diets. The effect of rutin on iron overload caused by genetic dysregulation of iron homoeostasis has not yet been investigated. In the present study we examined the effect of rutin treatment on tissue iron loading in a genetic mouse model of iron overload, which mirrors the iron loading associated with Type 3 hereditary haemochromatosis patients who have a defect in Transferrin Receptor 2 (TFR2). Male TFR2 knockout (KO) mice were administered rutin via oral gavage for 21 continuous days. Following treatment, iron levels in serum, liver, duodenum and spleen were assessed. In addition, hepatic ferritin protein levels were determined by Western blotting, and expression of iron homoeostasis genes by quantitative real-time PCR. Rutin treatment resulted in a significant reduction in hepatic ferritin protein expression and serum transferrin saturation. In addition, trends towards decreased iron levels in the liver and serum, and increased serum unsaturated iron binding capacity were observed. This is the first study to explore the utility of rutin as a potential iron chelator and therapeutic in an animal model of genetic iron overload.


Assuntos
Hemocromatose/tratamento farmacológico , Ferro/sangue , Fígado/efeitos dos fármacos , Receptores da Transferrina/deficiência , Rutina/farmacologia , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Ferritinas/metabolismo , Hemocromatose/sangue , Hemocromatose/genética , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores da Transferrina/sangue , Receptores da Transferrina/genética , Transferrina/metabolismo
2.
Biometals ; 34(4): 855-866, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33913062

RESUMO

Iron is an essential component for multiple biological processes. Its regulation within the body is thus tightly controlled. Dysregulation of iron levels within the body can result in several disorders associated with either excess iron accumulation, including haemochromatosis and thalassaemia, or iron deficiency. In cases of excess body iron, therapy involves depleting body iron levels either by venesection, typically for haemochromatosis, or using iron chelators for thalassemia. However, the current chelation options for people with iron overload are limited, with only three iron chelators approved for clinical use. This presents an opportunity for improved therapeutics to be identified and developed. The aim of this study was to examine multiple compounds from within the Davis open access natural product-based library (512 compounds) for their ability to chelate iron. In silico analysis of this library initially identified nine catechol-containing compounds and two closely related compounds. These compounds were subsequently screened using an in vitro DNA breakage assay and their ability to chelate biological iron was also examined in an iron-loaded hepatocyte cellular assay. Toxicity was assessed in hepatocyte and breast cancer cell lines. One compound, RAD362 [N-(3-aminopropyl)-3,4-dihydroxybenzamide] was able to protect against DNA damage, likely through the prevention of free radicals generated via the Fenton reaction; RAD362 treatment resulted in decreased ferritin protein levels in iron-loaded hepatocytes. Lastly, RAD362 resulted in significantly less cell death than the commonly used iron chelator deferoxamine. This is the first study to identify compound RAD362 as an iron chelator and potential therapeutic.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Catecóis/farmacologia , Quelantes de Ferro/farmacologia , Antineoplásicos/química , Produtos Biológicos/química , Catecóis/química , Proliferação de Células/efeitos dos fármacos , Quebras de DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Quelantes de Ferro/química , Células Tumorais Cultivadas
3.
Pharmaceuticals (Basel) ; 12(4)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775259

RESUMO

The interaction between hepcidin and ferroportin is the key mechanism involved in regulation of systemic iron homeostasis. This axis can be affected by multiple stimuli including plasma iron levels, inflammation and erythropoietic demand. Genetic defects or prolonged inflammatory stimuli results in dysregulation of this axis, which can lead to several disorders including hereditary hemochromatosis and anaemia of chronic disease. An imbalance in iron homeostasis is increasingly being associated with worse disease outcomes in many clinical conditions including multiple cancers and neurological disorders. Currently, there are limited treatment options for regulating iron levels in patients and thus significant efforts are being made to uncover approaches to regulate hepcidin and ferroportin expression. These approaches either target these molecules directly or regulatory steps which mediate hepcidin or ferroportin expression. This review examines the current status of hepcidin and ferroportin agonists and antagonists, as well as inducers and inhibitors of these proteins and their regulatory pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA